Verlagslink: | https://www.scitepress.org/Papers/2019/79557/79557.pdf | Verlagslink DOI: | 10.5220/0007955704830488 | Titel: | Miniature Autonomy as One Important Testing Means in the Development of Machine Learning Methods for Autonomous Driving : How ML-based Autonomous Driving could be Realized on a 1:87 Scale | Sprache: | Englisch | Autorenschaft: | Tiedemann, Tim Fuhrmann, Jonas Paulsen, Sebastian Schnirpel, Thorben Schönherr, Nils Buth, Bettina Pareigis, Stephan |
Herausgeber*In: | Gusikhin, Oleg Madani, Kurosh Zaytoon, Janan |
Schlagwörter: | Autonomy; Autonomous Driving; System Level Tests; Machine Learning; Mobile Robot | Erscheinungsdatum: | 2019 | Verlag: | SCITEPRESS - Science and Technology Publications | Teil der Schriftenreihe: | ICINCO 2019 : proceedings of the 16th International Conference on Informatics in Control, Automation and Robotics | Bandangabe: | 2 | Anfangsseite: | 483 | Endseite: | 488 | Konferenz: | International Conference on Informatics in Control, Automation and Robotics 2019 | Zusammenfassung: | In the current state of autonomous driving machine learning methods are dominating, especially for the environment recognition. For such solutions, the reliability and the robustness is a critical question. A “miniature autonomy” with model vehicles at a small scale could be beneficial for different reasons. Examples are (1) the testability of dangerous and close-to-crash edge cases, (2) the possibility to test potentially dangerous concepts as end-to-end learning or combined inference and learning phases, (3) the need to optimize algorithms thoroughly, and (4) a potential reduction of test mile counts. Presented is the motivation for miniature autonomy and a discussion of testing of machine learning methods. Finally, two currently set up platforms including one with an FPGA-based TPU for ML acceleration are described. |
URI: | http://hdl.handle.net/20.500.12738/10506 | ISBN: | 978-989-758-380-3 | ISSN: | 2184-2809 | Begutachtungsstatus: | Diese Version hat ein Peer-Review-Verfahren durchlaufen (Peer Review) | Einrichtung: | Department Informatik Fakultät Technik und Informatik |
Dokumenttyp: | Konferenzveröffentlichung |
Enthalten in den Sammlungen: | Publications without full text |
Zur Langanzeige
Volltext ergänzen
Feedback zu diesem Datensatz
Export
Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons