Verlagslink: https://www.scitepress.org/Papers/2019/79557/79557.pdf
Verlagslink DOI: 10.5220/0007955704830488
Titel: Miniature Autonomy as One Important Testing Means in the Development of Machine Learning Methods for Autonomous Driving : How ML-based Autonomous Driving could be Realized on a 1:87 Scale
Sprache: Englisch
Autorenschaft: Tiedemann, Tim 
Fuhrmann, Jonas 
Paulsen, Sebastian 
Schnirpel, Thorben 
Schönherr, Nils 
Buth, Bettina 
Pareigis, Stephan  
Herausgeber*In: Gusikhin, Oleg 
Madani, Kurosh 
Zaytoon, Janan 
Schlagwörter: Autonomy; Autonomous Driving; System Level Tests; Machine Learning; Mobile Robot
Erscheinungsdatum: 2019
Verlag: SCITEPRESS - Science and Technology Publications
Teil der Schriftenreihe: ICINCO 2019 : proceedings of the 16th International Conference on Informatics in Control, Automation and Robotics 
Bandangabe: 2
Anfangsseite: 483
Endseite: 488
Konferenz: International Conference on Informatics in Control, Automation and Robotics 2019 
Zusammenfassung: 
In the current state of autonomous driving machine learning methods are dominating, especially for the environment recognition. For such solutions, the reliability and the robustness is a critical question. A “miniature autonomy” with model vehicles at a small scale could be beneficial for different reasons. Examples are (1) the testability of dangerous and close-to-crash edge cases, (2) the possibility to test potentially dangerous concepts as end-to-end learning or combined inference and learning phases, (3) the need to optimize algorithms thoroughly, and (4) a potential reduction of test mile counts. Presented is the motivation for miniature autonomy and a discussion of testing of machine learning methods. Finally, two currently set up platforms including one with an FPGA-based TPU for ML acceleration are described.
URI: http://hdl.handle.net/20.500.12738/10506
ISBN: 978-989-758-380-3
ISSN: 2184-2809
Begutachtungsstatus: Diese Version hat ein Peer-Review-Verfahren durchlaufen (Peer Review)
Einrichtung: Department Informatik 
Fakultät Technik und Informatik 
Dokumenttyp: Konferenzveröffentlichung
Enthalten in den Sammlungen:Publications without full text

Zur Langanzeige

Seitenansichten

154
checked on 27.12.2024

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons