Verlagslink DOI: | 10.1145/3419394.3423624 | Titel: | BGP Beacons, Network Tomography, and Bayesian Computation to Locate Route Flap Damping | Sprache: | Autorenschaft: | Gray, Caitlin Mosig, Clemens Bush, Randy Pelsser, Cristel Roughan, Matthew Schmidt, Thomas Wählisch, Matthias |
Schlagwörter: | Hamiltonian Monte Carlo; RPKI; RFD; Metropolis-Hasting | Erscheinungsdatum: | 27-Okt-2020 | Verlag: | ACM ; New York | Zeitschrift oder Schriftenreihe: | Proceedings of the ACM SIGCOMM Internet Measurement Conference, IMC | Anfangsseite: | 492 | Endseite: | 505 | Zusammenfassung: | Pinpointing autonomous systems which deploy specific inter-domain techniques such as Route Flap Damping (RFD) or Route Origin Validation (ROV) remains a challenge today. Previous approaches to detect per-AS behavior often relied on heuristics derived from passive and active measurements. Those heuristics, however, often lacked accuracy or imposed tight restrictions on the measurement methods. We introduce an algorithmic framework for network tomography, BeCAUSe, which implements Bayesian Computation for Autonomous Systems. Using our original combination of active probing and stochastic simulation, we present the first study to expose the deployment of RFD. In contrast to the expectation of the Internet community, we find that at least 9% of measured ASs enable RFD, most using deprecated vendor default configuration parameters. To illustrate the power of computational Bayesian methods we compare BeCAUSe with three RFD heuristics. Thereafter we successfully apply a generalization of the Bayesian method to a second challenge, measuring deployment of ROV. |
URI: | http://hdl.handle.net/20.500.12738/10765 | ISBN: | 9781450381383 | Einrichtung: | Fakultät Technik und Informatik Department Informatik |
Dokumenttyp: | Konferenzveröffentlichung |
Enthalten in den Sammlungen: | Publications without full text |
Zur Langanzeige
Volltext ergänzen
Feedback zu diesem Datensatz
Export
Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.