Verlagslink DOI: 10.1109/VTC2020-Fall49728.2020.9348746
Titel: Network Anomaly Detection in Cars based on Time-Sensitive Ingress Control
Sprache: 
Autorenschaft: Meyer, Philipp  
Häckel, Timo  
Korf, Franz 
Schmidt, Thomas  
Schlagwörter: 802.1Qci; Vehicular network security; Time-Sensitive Networking; Software-Defined Networking
Erscheinungsdatum: 1-Nov-2020
Verlag: IEEE Press
Zeitschrift oder Schriftenreihe: IEEE Vehicular Technology Conference 
Zeitschriftenband: 2020-November
Anfangsseite: 1
Endseite: 5
Zusammenfassung: 
Connected cars need robust protection against network attacks. Network anomaly detection and prevention on board will be particularly fast and reliable when situated on the lowest possible layer. Blocking traffic on a low layer, however, causes severe harm if triggered erroneously by falsely positive alarms. In this paper, we introduce and evaluate a concept for detecting anomalous traffic using the ingress control of Time-Sensitive Networking (TSN). We build on the idea that already defined TSN traffic descriptors for in-car network configurations are rigorous, and hence any observed violation should not be a false positive. Also, we use Software-Defined Networking (SDN) technologies to collect and evaluate ingress anomaly reports, to identify the generating flows, and to ban them from the network. We evaluate our concept by simulating a real-world zonal network topology of a future car. Our findings confirm that abnormally behaving individual flows can indeed be reliably segregated with zero false positives.
URI: http://hdl.handle.net/20.500.12738/10771
ISBN: 9781728194844
ISSN: 1042-4369
Einrichtung: Fakultät Technik und Informatik 
Department Informatik 
Dokumenttyp: Konferenzveröffentlichung
Enthalten in den Sammlungen:Publications without full text

Zur Langanzeige

Seitenansichten

107
checked on 13.01.2025

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.