Verlagslink DOI: 10.1109/BigData50022.2020.9378138
Titel: A Scalable and Dependable Data Analytics Platform for Water Infrastructure Monitoring
Sprache: Englisch
Autorenschaft: Lorenz, Felix 
Geldenhuys, Morgan 
Sommer, Harald 
Jakobs, Frauke 
Luring, Carsten 
Skwarek, Volker  
Behnke, Ilja 
Thamsen, Lauritz 
Erscheinungsdatum: 2020
Verlag: IEEE
Anfangsseite: 3488
Endseite: 3493
Projekt: Intelligente Zustandserkennung in Wasser- und Abwassernetzwerken mittels verteitelter Schwarmsensorik 
Konferenz: IEEE International Conference on Big Data 2020 
Zusammenfassung: 
With weather becoming more extreme both in terms of longer dry periods and more severe rain events, municipal water networks are increasingly under pressure. The effects include damages to the pipes, flash floods on the streets and combined sewer overflows. Retrofitting underground infrastructure is very expensive, thus water infrastructure operators are increasingly looking to deploy IoT solutions that promise to alleviate the problems at a fraction of the cost.In this paper, we report on preliminary results from an ongoing joint research project, specifically on the design and evaluation of its data analytics platform. The overall system consists of energy-efficient sensor nodes that send their observations to a stream processing engine, which analyzes and enriches the data and transmits the results to a GIS-based frontend. As the proposed solution is designed to monitor large and critical infrastructures of cities, several non-functional requirements such as scalability, responsiveness and dependability are factored into the system architecture. We present a scalable stream processing platform and its integration with the other components, as well as the algorithms used for data processing. We discuss significant challenges and design decisions, introduce an efficient data enrichment procedure and present empirical results to validate the compliance with the target requirements. The entire code for deploying our platform and running the data enrichment jobs is made publicly available with this paper.
URI: http://hdl.handle.net/20.500.12738/10899
ISBN: 978-1-7281-6251-5
978-1-7281-6252-2
Begutachtungsstatus: Diese Version hat ein Peer-Review-Verfahren durchlaufen (Peer Review)
Einrichtung: Forschungs- und Transferzentrum Digitale Wirtschaftsprozesse 
Fakultät Life Sciences 
Department Wirtschaftsingenieurwesen 
Dokumenttyp: Konferenzveröffentlichung
Sponsor / Fördernde Einrichtung: Bundesministerium für Bildung und Forschung 
Enthalten in den Sammlungen:Publications without full text

Zur Langanzeige

Seitenansichten

152
checked on 26.12.2024

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.