DC ElementWertSprache
dc.contributor.authorLorenz, Felix-
dc.contributor.authorGeldenhuys, Morgan-
dc.contributor.authorSommer, Harald-
dc.contributor.authorJakobs, Frauke-
dc.contributor.authorLuring, Carsten-
dc.contributor.authorSkwarek, Volker-
dc.contributor.authorBehnke, Ilja-
dc.contributor.authorThamsen, Lauritz-
dc.date.accessioned2021-04-15T13:12:09Z-
dc.date.available2021-04-15T13:12:09Z-
dc.date.issued2020-
dc.identifier.isbn978-1-7281-6251-5en_US
dc.identifier.isbn978-1-7281-6252-2en_US
dc.identifier.urihttp://hdl.handle.net/20.500.12738/10899-
dc.description.abstractWith weather becoming more extreme both in terms of longer dry periods and more severe rain events, municipal water networks are increasingly under pressure. The effects include damages to the pipes, flash floods on the streets and combined sewer overflows. Retrofitting underground infrastructure is very expensive, thus water infrastructure operators are increasingly looking to deploy IoT solutions that promise to alleviate the problems at a fraction of the cost.In this paper, we report on preliminary results from an ongoing joint research project, specifically on the design and evaluation of its data analytics platform. The overall system consists of energy-efficient sensor nodes that send their observations to a stream processing engine, which analyzes and enriches the data and transmits the results to a GIS-based frontend. As the proposed solution is designed to monitor large and critical infrastructures of cities, several non-functional requirements such as scalability, responsiveness and dependability are factored into the system architecture. We present a scalable stream processing platform and its integration with the other components, as well as the algorithms used for data processing. We discuss significant challenges and design decisions, introduce an efficient data enrichment procedure and present empirical results to validate the compliance with the target requirements. The entire code for deploying our platform and running the data enrichment jobs is made publicly available with this paper.en
dc.description.sponsorshipBundesministerium für Bildung und Forschungen_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.subject.ddc620: Ingenieurwissenschaftenen_US
dc.titleA Scalable and Dependable Data Analytics Platform for Water Infrastructure Monitoringen
dc.typeinProceedingsen_US
dc.relation.conferenceIEEE International Conference on Big Data 2020en_US
dc.description.versionPeerRevieweden_US
tuhh.container.endpage3493en_US
tuhh.container.startpage3488en_US
tuhh.oai.showtrueen_US
tuhh.publication.instituteForschungs- und Transferzentrum Digitale Wirtschaftsprozesseen_US
tuhh.publication.instituteFakultät Life Sciencesen_US
tuhh.publication.instituteDepartment Wirtschaftsingenieurwesenen_US
tuhh.publisher.doi10.1109/BigData50022.2020.9378138-
tuhh.type.opusInProceedings (Aufsatz / Paper einer Konferenz etc.)-
dc.relation.projectIntelligente Zustandserkennung in Wasser- und Abwassernetzwerken mittels verteitelter Schwarmsensoriken_US
dc.type.casraiConference Paper-
dc.type.dinicontributionToPeriodical-
dc.type.drivercontributionToPeriodical-
dc.type.statusinfo:eu-repo/semantics/publishedVersionen_US
dcterms.DCMITypeText-
item.creatorGNDLorenz, Felix-
item.creatorGNDGeldenhuys, Morgan-
item.creatorGNDSommer, Harald-
item.creatorGNDJakobs, Frauke-
item.creatorGNDLuring, Carsten-
item.creatorGNDSkwarek, Volker-
item.creatorGNDBehnke, Ilja-
item.creatorGNDThamsen, Lauritz-
item.fulltextNo Fulltext-
item.creatorOrcidLorenz, Felix-
item.creatorOrcidGeldenhuys, Morgan-
item.creatorOrcidSommer, Harald-
item.creatorOrcidJakobs, Frauke-
item.creatorOrcidLuring, Carsten-
item.creatorOrcidSkwarek, Volker-
item.creatorOrcidBehnke, Ilja-
item.creatorOrcidThamsen, Lauritz-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.openairetypeinProceedings-
crisitem.author.deptDepartment Wirtschaftsingenieurwesen-
crisitem.author.orcid0000-0001-5065-1029-
crisitem.author.parentorgFakultät Life Sciences-
crisitem.project.funderBundesministerium für Bildung und Forschung-
Enthalten in den Sammlungen:Publications without full text
Zur Kurzanzeige

Seitenansichten

152
checked on 26.12.2024

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.