Verlagslink: https://nbn-resolving.org/urn:nbn:de:gbv:18302-aero2014-04-11
https://n2t.net/ark:/13960/s2h6mhc4fq1
http://nbn-resolving.org/urn:nbn:se:liu:diva-105843
Verlagslink DOI: 10.5281/zenodo.18100616
Titel: Predictive Health Monitoring for Aircraft Systems using Decision Trees
Sprache: Englisch
Autorenschaft: Gerdes, Mike 
Schlagwörter: Condition Monitoring; Condition Prediction; Failure Prediction; Decision Trees; Genetic Algorithm; Fuzzy Decision Tree Evaluation; System Monitoring; Aircraft Health Monitoring
Erscheinungsdatum: 2014
Prüfungsdatum: 11-Apr-2014
Verlag: Linköping University Electronic Press
Teil der Schriftenreihe: Linköping studies in science and technology 
Bandangabe: 1655
Projekt: Preventive Aircraft Health Monitoring for Integrated Reconfiguration – PAHMIR 
Zusammenfassung: 
Unscheduled aircraft maintenance causes a lot problems and costs for aircraft operators. This is due to the fact that aircraft cause significant costs if flights have to be delayed or canceled and because spares are not always available at any place and sometimes have to be shipped across the world. Reducing the number of unscheduled maintenance is thus a great costs factor for aircraft operators. This thesis describes three methods for aircraft health monitoring and prediction; one method for system monitoring, one method for forecasting of time series and one method that combines the two other methods for one complete monitoring and prediction process. Together the three methods allow the forecasting of possible failures. The two base methods use decision trees for decision making in the processes and genetic optimization to improve the performance of the decision trees and to reduce the need for human interaction. Decision trees have the advantage that the generated code can be fast and easily processed, they can be altered by human experts without much work and they are readable by humans. The human readability and modification of the results is especially important to include special knowledge and to remove errors, which the automated code generation produced.
URI: http://hdl.handle.net/20.500.12738/1093
DOI: 10.48441/4427.3240
ISBN: 978-91-7519-346-5
ISSN: 0280-7971
Begutachtungsstatus: Diese Version wurde begutachtet (fachspezifisches Begutachtungsverfahren)
Einrichtung: Department Fahrzeugtechnik und Flugzeugbau 
Fakultät Technik und Informatik 
Forschungsgruppe Flugzeugentwurf und -systeme (AERO) 
Linköpings Universitet 
Dokumenttyp: Dissertation/Habilitation
Abschlussarbeitentyp: Dissertation
Hinweise zur Quelle: GERDES, Mike, 2014. Predictive Health Monitoring for Aircraft Systems using Decision Trees. Licentiate Thesis. Linköping, Sweden: Linköping University. Available from: https://nbn-resolving.org/urn:nbn:de:gbv:18302-aero2014-04-11
Betreuer*in: Scholz, Dieter 
Krus, Petter 
Randerath, Bernhard 
Gutachter*in: Galar, Diego 
Sponsor / Fördernde Einrichtung: Hamburg. Behörde für Wirtschaft und Innovation 
Enthalten in den Sammlungen:Publications with full text

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat
TextGerdesLic.pdf16.16 MBAdobe PDFÖffnen/Anzeigen
Zur Langanzeige

Seitenansichten

317
checked on 11.02.2026

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Feedback zu diesem Datensatz


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons