Verlagslink: http://core.informatik.haw-hamburg.de/bib/eigene/jk-otdee-14.pdf
Verlagslink DOI: 10.1109/ITSC.2014.6958060
Titel: Object tracking and dynamic estimation on evidential grids
Sprache: Englisch
Autorenschaft: Jungnickel, Ruben 
Korf, Franz 
Herausgeber: Institute of Electrical and Electronics Engineers 
Erscheinungsdatum: 2014
Verlag: IEEE
Teil der Schriftenreihe: 2014 IEEE 17th International Conference on Intelligent Transportation Systems (ITSC 2014) : Qingdao, China, 8 - 11 October 2014 
Anfangsseite: 2310
Endseite: 2316
Konferenz: IEEE International Conference on Intelligent Transportation Systems 2014 
Zusammenfassung: 
Autonomous driving is one of the most challenging tasks of the automotive industry. As a subtask, the estimation of driveable and non driveable space is often solved by applying occupancy grids. The information about non driveable space can be used to improve object tracking. This paper presents an approach for object tracking and modelling in an occupancy grid map. Tracking objects on grid cells yields the advantage of a consistent environmental model on the occupancy grid map. We introduce the occupancy grid map as the only information source for the object tracking module. Taking advantage of the Dempster Shafer theory, a dynamic belief of conflicting cells can be estimated. This dynamic belief is then accumulated in a tracked object model. This is a grid based free form object model that uses detached grid cells to model vehicles in urban environment. We reduce false positives and initialization time by maintaining a dynamic belief for each object.
URI: http://hdl.handle.net/20.500.12738/1097
ISBN: 978-1-4799-6078-1
978-1-4799-6079-8
1-4799-6079-9
ISSN: 2153-0017
Einrichtung: Department Informatik 
Fakultät Technik und Informatik 
Dokumenttyp: Konferenzveröffentlichung
Enthalten in den Sammlungen:Publications without full text

Zur Langanzeige

Seitenansichten

91
checked on 14.01.2025

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.