Verlagslink DOI: 10.1007/978-3-030-21803-4_50
Titel: Towards Multi-tree Methods for Large-Scale Global Optimization
Sprache: Englisch
Autorenschaft: Muts, Pavlo 
Nowak, Ivo 
Herausgeber*In: An Le Thi, Hoai 
Le, Hoai Minh 
Pham-dinh, Tao 
Schlagwörter: Decomposition method; Global optimization; Mixed-integer nonlinear programming
Erscheinungsdatum: 15-Jun-2019
Verlag: Springer
Buchtitel: Optimization of complex systems : theory, models, algorithms and applications
Zeitschrift oder Schriftenreihe: Advances in intelligent systems and computing 
Zeitschriftenband: 991
Anfangsseite: 498
Endseite: 506
Konferenz: World Congress on Global Optimization 2019 
Zusammenfassung: 
© 2020, Springer Nature Switzerland AG. In this paper, we present a new multi-tree approach for solving large scale Global Optimization Problems (GOP), called DECOA (Decomposition-based Outer Approximation). DECOA is based on decomposing a GOP into sub-problems, which are coupled by linear constraints. It computes a solution by alternately solving sub- and master-problems using Branch-and-Bound (BB). Since DECOA does not use a single (global) BB-tree, it is called a multi-tree algorithm. After formulating a GOP as a block-separable MINLP, we describe how piecewise linear Outer Approximations (OA) can be computed by reformulating nonconvex functions as a Difference of Convex functions. This is followed by a description of the main- and sub-algorithms of DECOA, including a decomposition-based heuristic for finding solution candidates. Finally, we present preliminary results with MINLPs and conclusions.
URI: http://hdl.handle.net/20.500.12738/11213
ISBN: 978-3-030-21803-4
978-3-030-21802-7
ISSN: 2194-5357
Begutachtungsstatus: Diese Version hat ein Peer-Review-Verfahren durchlaufen (Peer Review)
Einrichtung: Department Maschinenbau und Produktion 
Fakultät Technik und Informatik 
Dokumenttyp: Konferenzveröffentlichung
Enthalten in den Sammlungen:Publications without full text

Zur Langanzeige

Seitenansichten

104
checked on 26.12.2024

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.