Verlagslink DOI: | 10.1007/978-3-030-21803-4_50 | Titel: | Towards Multi-tree Methods for Large-Scale Global Optimization | Sprache: | Englisch | Autorenschaft: | Muts, Pavlo Nowak, Ivo |
Herausgeber*In: | An Le Thi, Hoai Le, Hoai Minh Pham-dinh, Tao |
Schlagwörter: | Decomposition method; Global optimization; Mixed-integer nonlinear programming | Erscheinungsdatum: | 15-Jun-2019 | Verlag: | Springer | Buchtitel: | Optimization of complex systems : theory, models, algorithms and applications | Zeitschrift oder Schriftenreihe: | Advances in intelligent systems and computing | Zeitschriftenband: | 991 | Anfangsseite: | 498 | Endseite: | 506 | Konferenz: | World Congress on Global Optimization 2019 | Zusammenfassung: | © 2020, Springer Nature Switzerland AG. In this paper, we present a new multi-tree approach for solving large scale Global Optimization Problems (GOP), called DECOA (Decomposition-based Outer Approximation). DECOA is based on decomposing a GOP into sub-problems, which are coupled by linear constraints. It computes a solution by alternately solving sub- and master-problems using Branch-and-Bound (BB). Since DECOA does not use a single (global) BB-tree, it is called a multi-tree algorithm. After formulating a GOP as a block-separable MINLP, we describe how piecewise linear Outer Approximations (OA) can be computed by reformulating nonconvex functions as a Difference of Convex functions. This is followed by a description of the main- and sub-algorithms of DECOA, including a decomposition-based heuristic for finding solution candidates. Finally, we present preliminary results with MINLPs and conclusions. |
URI: | http://hdl.handle.net/20.500.12738/11213 | ISBN: | 978-3-030-21803-4 978-3-030-21802-7 |
ISSN: | 2194-5357 | Begutachtungsstatus: | Diese Version hat ein Peer-Review-Verfahren durchlaufen (Peer Review) | Einrichtung: | Department Maschinenbau und Produktion Fakultät Technik und Informatik |
Dokumenttyp: | Konferenzveröffentlichung |
Enthalten in den Sammlungen: | Publications without full text |
Zur Langanzeige
Volltext ergänzen
Feedback zu diesem Datensatz
Export
Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.