Verlagslink DOI: 10.3390/su13137000
Titel: Improving model predictions—integration of real-time sensor data into a running simulation of an agent-based model
Sprache: Englisch
Autorenschaft: Lenfers, Ulfia A.  
Ahmady-Moghaddam, Nima 
Glake, Daniel 
Ocker, Florian 
Osterholz, Daniel 
Ströbele, Jonathan 
Clemen, Thomas  
Herausgeber*In: Giabbanelli, Philippe J. 
Ligmann-Zielinska, Arika 
Schlagwörter: Agent-based model; Decision support systems; IoT sensors; MARS; Model development; Multimodal travel; Real-time data; Simulation correction; Smart cities; Urban planning
Erscheinungsdatum: 22-Jun-2021
Verlag: MDPI
Zeitschrift oder Schriftenreihe: Sustainability 
Zeitschriftenband: 13
Zeitschriftenausgabe: 13
Zusammenfassung: 
The current trend towards living in big cities contributes to an increased demand for efficient and sustainable space and resource allocation in urban environments. This leads to enormous pressure for resource minimization in city planning. One pillar of efficient city management is a smart intermodal traffic system. Planning and organizing the various kinds of modes of transport in a complex and dynamically adaptive system such as a city is inherently challenging. By deliberately simplifying reality, models can help decision-makers shape the traffic systems of tomorrow. Meanwhile, Smart City initiatives are investing in sensors to observe and manage many kinds of urban resources, making up a part of the Internet of Things (IoT) that produces massive amounts of data relevant for urban planning and monitoring. We use these new data sources of smart cities by integrating real-time data of IoT sensors in an ongoing simulation. In this sense, the model is a digital twin of its real-world counterpart, being augmented with real-world data. To our knowledge, this is a novel instance of real-time correction during simulation of an agent-based model. The process of creating a valid mapping between model components and real-world objects posed several challenges and offered valuable insights, particularly when studying the interaction between humans and their environment. As a proof-of-concept for our implementation, we designed a showcase with bike rental stations in Hamburg-Harburg, a southern district of Hamburg, Germany. Our objective was to investigate the concept of real-time data correction in agent-based modeling, which we consider to hold great potential for improving the predictive capabilities of models. In particular, we hope that the chosen proof-of-concept informs the ongoing politically supported trends in mobility—away from individual and private transport and towards—in Hamburg.
URI: http://hdl.handle.net/20.500.12738/11730
DOI: 10.48441/4427.430
ISSN: 2071-1050
Begutachtungsstatus: Diese Version hat ein Peer-Review-Verfahren durchlaufen (Peer Review)
Einrichtung: Fakultät Technik und Informatik 
Department Informatik 
Dokumenttyp: Zeitschriftenbeitrag
Hinweise zur Quelle: Lenfers, U.A.; Ahmady-Moghaddam, N.; Glake, D.; Ocker, F.; Osterholz, D.; Ströbele, J.; Clemen, T. Improving Model Predictions—Integration of Real-Time Sensor Data into a Running Simulation of an Agent-Based Model. Sustainability 2021, 13, 7000. https:// doi.org/10.3390/su13137000. The APC was funded by Hamburg University of Applied Sciences.
Sponsor / Fördernde Einrichtung: Hochschule für Angewandte Wissenschaften Hamburg 
Enthalten in den Sammlungen:Publications with full text

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat
sustainability-13-07000.pdf3.69 MBAdobe PDFÖffnen/Anzeigen
Zur Langanzeige

Seitenansichten

414
checked on 22.11.2024

Download(s)

82
checked on 22.11.2024

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Feedback zu diesem Datensatz


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons