DC ElementWertSprache
dc.contributor.authorLenfers, Ulfia A.-
dc.contributor.authorAhmady-Moghaddam, Nima-
dc.contributor.authorGlake, Daniel-
dc.contributor.authorOcker, Florian-
dc.contributor.authorOsterholz, Daniel-
dc.contributor.authorStröbele, Jonathan-
dc.contributor.authorClemen, Thomas-
dc.date.accessioned2021-10-22T14:03:18Z-
dc.date.available2021-10-22T14:03:18Z-
dc.date.issued2021-06-22-
dc.identifier.issn2071-1050en_US
dc.identifier.urihttp://hdl.handle.net/20.500.12738/11730-
dc.description.abstractThe current trend towards living in big cities contributes to an increased demand for efficient and sustainable space and resource allocation in urban environments. This leads to enormous pressure for resource minimization in city planning. One pillar of efficient city management is a smart intermodal traffic system. Planning and organizing the various kinds of modes of transport in a complex and dynamically adaptive system such as a city is inherently challenging. By deliberately simplifying reality, models can help decision-makers shape the traffic systems of tomorrow. Meanwhile, Smart City initiatives are investing in sensors to observe and manage many kinds of urban resources, making up a part of the Internet of Things (IoT) that produces massive amounts of data relevant for urban planning and monitoring. We use these new data sources of smart cities by integrating real-time data of IoT sensors in an ongoing simulation. In this sense, the model is a digital twin of its real-world counterpart, being augmented with real-world data. To our knowledge, this is a novel instance of real-time correction during simulation of an agent-based model. The process of creating a valid mapping between model components and real-world objects posed several challenges and offered valuable insights, particularly when studying the interaction between humans and their environment. As a proof-of-concept for our implementation, we designed a showcase with bike rental stations in Hamburg-Harburg, a southern district of Hamburg, Germany. Our objective was to investigate the concept of real-time data correction in agent-based modeling, which we consider to hold great potential for improving the predictive capabilities of models. In particular, we hope that the chosen proof-of-concept informs the ongoing politically supported trends in mobility—away from individual and private transport and towards—in Hamburg.en
dc.description.sponsorshipHochschule für Angewandte Wissenschaften Hamburgen_US
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.relation.ispartofSustainabilityen_US
dc.subjectAgent-based modelen_US
dc.subjectDecision support systemsen_US
dc.subjectIoT sensorsen_US
dc.subjectMARSen_US
dc.subjectModel developmenten_US
dc.subjectMultimodal travelen_US
dc.subjectReal-time dataen_US
dc.subjectSimulation correctionen_US
dc.subjectSmart citiesen_US
dc.subjectUrban planningen_US
dc.subject.ddc004: Informatiken_US
dc.titleImproving model predictions—integration of real-time sensor data into a running simulation of an agent-based modelen
dc.typeArticleen_US
dc.identifier.doi10.48441/4427.430-
dc.description.versionPeerRevieweden_US
local.contributorPerson.editorGiabbanelli, Philippe J.-
local.contributorPerson.editorLigmann-Zielinska, Arika-
openaire.rightsinfo:eu-repo/semantics/openAccessen_US
tuhh.container.issue13en_US
tuhh.container.volume13en_US
tuhh.identifier.urnurn:nbn:de:gbv:18302-reposit-131848-
tuhh.oai.showtrueen_US
tuhh.publication.instituteFakultät Technik und Informatiken_US
tuhh.publication.instituteDepartment Informatiken_US
tuhh.publisher.doi10.3390/su13137000-
tuhh.type.opus(wissenschaftlicher) Artikel-
dc.rights.cchttps://creativecommons.org/licenses/by/4.0/en_US
dc.type.casraiJournal Article-
dc.type.diniarticle-
dc.type.driverarticle-
dc.type.statusinfo:eu-repo/semantics/publishedVersionen_US
dcterms.DCMITypeText-
tuhh.container.articlenumber7000en_US
local.comment.externalLenfers, U.A.; Ahmady-Moghaddam, N.; Glake, D.; Ocker, F.; Osterholz, D.; Ströbele, J.; Clemen, T. Improving Model Predictions—Integration of Real-Time Sensor Data into a Running Simulation of an Agent-Based Model. Sustainability 2021, 13, 7000. https:// doi.org/10.3390/su13137000. The APC was funded by Hamburg University of Applied Sciences.-
tuhh.apc.statustrueen_US
item.creatorGNDLenfers, Ulfia A.-
item.creatorGNDAhmady-Moghaddam, Nima-
item.creatorGNDGlake, Daniel-
item.creatorGNDOcker, Florian-
item.creatorGNDOsterholz, Daniel-
item.creatorGNDStröbele, Jonathan-
item.creatorGNDClemen, Thomas-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.creatorOrcidLenfers, Ulfia A.-
item.creatorOrcidAhmady-Moghaddam, Nima-
item.creatorOrcidGlake, Daniel-
item.creatorOrcidOcker, Florian-
item.creatorOrcidOsterholz, Daniel-
item.creatorOrcidStröbele, Jonathan-
item.creatorOrcidClemen, Thomas-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.openairetypeArticle-
crisitem.author.deptDepartment Informatik-
crisitem.author.deptDepartment Informatik-
crisitem.author.deptDepartment Informatik-
crisitem.author.deptDepartment Informatik-
crisitem.author.deptDepartment Informatik-
crisitem.author.orcid0000-0002-4425-7241-
crisitem.author.orcid0000-0002-8200-5141-
crisitem.author.parentorgFakultät Technik und Informatik-
crisitem.author.parentorgFakultät Technik und Informatik-
crisitem.author.parentorgFakultät Technik und Informatik-
crisitem.author.parentorgFakultät Technik und Informatik-
crisitem.author.parentorgFakultät Technik und Informatik-
Enthalten in den Sammlungen:Publications with full text
Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat
sustainability-13-07000.pdf3.69 MBAdobe PDFÖffnen/Anzeigen
Zur Kurzanzeige

Seitenansichten

414
checked on 22.11.2024

Download(s)

82
checked on 22.11.2024

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Feedback zu diesem Datensatz


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons