Verlagslink DOI: 10.1007/978-3-030-01470-4_8
Titel: Approaches to Fault Detection for Heating Systems Using CP Tensor Decompositions
Sprache: Englisch
Autorenschaft: Sewe, Erik 
Pangalos, Georg 
Lichtenberg, Gerwald  
Herausgeber*In: Obaidat, Mohammad S. 
Ören, Tuncer 
De Rango, Floriano 
Schlagwörter: Fault detection; Heating systems; Multi-linear systems; Nonlinear parameter identification; Operting regimes; Parity equations; Tensor decomposition
Erscheinungsdatum: 21-Nov-2018
Verlag: Springer
Teil der Schriftenreihe: Simulation and Modeling Methodologies, Technologies and Applications : 7th International Conference, SIMULTECH 2017 Madrid, Spain, July 26–28, 2017 Revised Selected Papers 
Zeitschrift oder Schriftenreihe: Advances in intelligent systems and computing 
Zeitschriftenband: 873
Anfangsseite: 128
Endseite: 152
Konferenz: International Conference on Simulation and Modeling Methodologies, Technologies and Applications 2017 
Zusammenfassung: 
Two new signal-based and one model-based fault detection methods using canonical polyadic (CP) tensor decomposition algorithms are presented, and application examples of heating systems are given for all methods. The first signal-based fault detection method uses the factor matrices of a data tensor directly, the second calculates expected values from the decomposed tensor and compares these with measured values to generate the residuals. The third fault detection method is based on multi-linear models represented by parameter tensors with elements computed by subspace parameter identification algorithms and data for different but structured operating regimes. In case of missing data or model parameters in tensor representation, an approximation method based on a special CP tensor decomposition algorithm for incomplete tensors is proposed, called the decompose-and-unfold method. As long as all relevant dynamics has been recorded, this method approximates – also from incomplete data – models for all operating regimes, which can be used for residual generation and fault detection, e.g. by parity equations.
URI: http://hdl.handle.net/20.500.12738/11796
ISBN: 9783030014698
978-3-030-01470-4
ISSN: 2194-5357
Begutachtungsstatus: Diese Version hat ein Peer-Review-Verfahren durchlaufen (Peer Review)
Einrichtung: Department Medizintechnik 
Fakultät Technik und Informatik 
Dokumenttyp: Konferenzveröffentlichung
Enthalten in den Sammlungen:Publications without full text

Zur Langanzeige

Seitenansichten

60
checked on 13.01.2025

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.