DC ElementWertSprache
dc.contributor.authorGerdes, Mike-
dc.date.accessioned2020-08-26T09:16:29Z-
dc.date.available2020-08-26T09:16:29Z-
dc.date.issued2013-9-15
dc.identifier.issn0957-4174
dc.identifier.urihttp://hdl.handle.net/20.500.12738/1194-
dc.description.abstractUnscheduled maintenance of aircraft can cause significant costs. The machine needs to be repaired before it can operate again. Thus it is desirable to have concepts and methods to prevent unscheduled maintenance. This paper proposes a method for forecasting the condition of aircraft air conditioning system based on observed past data. Forecasting is done in a point by point way, by iterating the algorithm. The proposed method uses decision trees to find and learn patterns in past data and use these patterns to select the best forecasting method to forecast future data points. Forecasting a data point is based on selecting the best applicable approximation method. The selection is done by calculating different features/attributes of the time series and then evaluating the decision tree. A genetic algorithm is used to find the best feature set for the given problem to increase the forecasting performance. The experiments show a good forecasting ability even when the function is disturbed by noise.en
dc.language.isoenen_US
dc.relation.ispartofExpert systems with applications : an international journal
dc.titleDecision Trees and Genetic Algorithms for Condition Monitoring - Forecasting of Aircraft Air Conditioningen
dc.typeArticleen_US
dc.description.versionPeerRevieweden_US
tuhh.container.endpage5026
tuhh.container.issue12
tuhh.container.startpage5021
tuhh.container.volume40
tuhh.oai.showtrueen_US
tuhh.publication.instituteDepartment Fahrzeugtechnik und Flugzeugbauen_US
tuhh.publication.instituteFakultät Technik und Informatiken_US
tuhh.publisher.doi10.1016/j.eswa.2013.03.025
tuhh.publisher.urlhttp://www.fzt.haw-hamburg.de/pers/Scholz/PAHMIR/PAHMIR_PUB_CEAS_11-09-27.pdf
tuhh.type.opus(wissenschaftlicher) Artikel-
dc.type.casraiJournal Article-
dc.type.diniarticle-
dc.type.driverarticle-
dc.type.statusinfo:eu-repo/semantics/publishedVersionen_US
dcterms.DCMITypeText-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.creatorGNDGerdes, Mike-
item.openairetypeArticle-
item.grantfulltextnone-
item.creatorOrcidGerdes, Mike-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
Enthalten in den Sammlungen:Publications without full text
Zur Kurzanzeige

Seitenansichten

98
checked on 14.01.2025

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.