Verlagslink DOI: | 10.18653/v1/2021.eacl-demos.8 | Titel: | Forum 4.0 : an open-source user comment analysis framework | Sprache: | Englisch | Autorenschaft: | Haering, Marlo Andersen, Jakob Smedegaard Biemann, Chris Loosen, Wiebke Milde, Benjamin Pietz, Tim Stöcker, Christian Wiedemann, Gregor Zukunft, Olaf Maalej, Walid |
Herausgeber*In: | Gkatzia, Dimitra Seddah, Djamé |
Herausgeber: | Association for Computational Linguistics | Erscheinungsdatum: | 2021 | Verlag: | Association for Computational Linguistics (ACL) | Teil der Schriftenreihe: | The 16th Conference of the European Chapter of the Association for Computational Linguistics - proceedings of the System Demonstrations : April 19-23, 2021 : EACL 2021 | Anfangsseite: | 63 | Endseite: | 70 | Konferenz: | Conference of the European Chapter of the Association for Computational Linguistics 2021 | Zusammenfassung: | With the increasing number of user comments in diverse domains, including comments on online journalism and e-commerce websites, the manual content analysis of these comments becomes time-consuming and challenging. However, research showed that user comments contain useful information for different domain experts, which is thus worth finding and utilizing. This paper introduces Forum 4.0, an open-source framework to semi-automatically analyze, aggregate, and visualize user comments based on labels defined by domain experts. We demonstrate the applicability of Forum 4.0 with comments analytics scenarios within the domains of online journalism and app stores. We outline the underlying container architecture, including the web-based user interface, the machine learning component, and the task manager for time-consuming tasks. We finally conduct machine learning experiments with simulated annotations and different sampling strategies on existing datasets from both domains to evaluate Forum 4.0's performance. Forum 4.0 achieves promising classification results (ROC-AUC ≥ 0.9 with 100 annotated samples), utilizing transformer-based embeddings with a lightweight logistic regression model. We explain how Forum 4.0's architecture is applicable for millions of user comments in real-time, yet at feasible training and classification costs. |
URI: | http://hdl.handle.net/20.500.12738/12733 | ISBN: | 978-1-954085-05-3 | Begutachtungsstatus: | Diese Version wurde begutachtet (fachspezifisches Begutachtungsverfahren) | Einrichtung: | Department Information Fakultät Design, Medien und Information Department Informatik Fakultät Technik und Informatik |
Dokumenttyp: | Konferenzveröffentlichung |
Enthalten in den Sammlungen: | Publications without full text |
Zur Langanzeige
Volltext ergänzen
Feedback zu diesem Datensatz
Export
Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons