Verlagslink DOI: | 10.18653/v1/2021.acl-demo.17 | Titel: | REM : Efficient Semi-Automated Real-Time Moderation of Online Forums | Sprache: | Englisch | Autorenschaft: | Andersen, Jakob Smedegaard Zukunft, Olaf Maalej, Walid |
Herausgeber*In: | Ji, Heng Park, Jong C. Xia, Rui |
Herausgeber: | Association for Computational Linguistics | Erscheinungsdatum: | 2021 | Verlag: | Association for Computational Linguistics (ACL) | Teil der Schriftenreihe: | The Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing - proceedings of the System Demonstrations : August 1st-August 6th, 2021, Bangkok, Thailand (online) : ACL-IJCNLP 2021 | Anfangsseite: | 142 | Endseite: | 149 | Konferenz: | Joint Conference of the Annual Meeting of the Association for Computational Linguistics and the International Joint Conference on Natural Language Processing 2021 | Zusammenfassung: | This paper presents REM, a novel tool for the semi-automated real-time moderation of large scale online forums. The growing demand for online participation and the increasing number of user comments raise challenges in filtering out harmful and undesirable content from public debates in online forums. Since a manual moderation does not scale well and pure automated approaches often lack the required level of accuracy, we suggest a semi-automated moderation approach. Our approach maximizes the efficiency of manual efforts by targeting only those comments for which human intervention is needed, e.g. due to high classification uncertainty. Our tool offers a rich visual interactive environment enabling the exploration of online debates. We conduct a preliminary evaluation experiment to demonstrate the suitability of our approach and publicly release the source code of REM. |
URI: | http://hdl.handle.net/20.500.12738/12791 | ISBN: | 978-1-954085-56-5 | Einrichtung: | Forschungsgruppe Big Data Lab Department Informatik Fakultät Technik und Informatik |
Dokumenttyp: | Konferenzveröffentlichung |
Enthalten in den Sammlungen: | Publications without full text |
Zur Langanzeige
Volltext ergänzen
Feedback zu diesem Datensatz
Export
Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons