Verlagslink DOI: 10.18653/v1/2020.coling-main.484
Titel: Word-Level Uncertainty Estimation for Black-Box Text Classifiers using RNNs
Sprache: Englisch
Autorenschaft: Andersen, Jakob Smedegaard  
Schöner, Tom 
Maalej, Walid 
Herausgeber*In: Scott, Donia 
Bel, Nuria 
Zong, Chengqing 
Herausgeber: Association for Computational Linguistics 
Erscheinungsdatum: 2020
Verlag: International Committee on Computational Linguistics ; Association for Computational Linguistics
Teil der Schriftenreihe: The 28th International Conference on Computational Linguistics - proceedings of the conference : December 8-13, 2020, Barcelona, Spain (Online) : COLING 2020 
Anfangsseite: 5541
Endseite: 5546
Konferenz: International Conference on Computational Linguistics 2020 
Zusammenfassung: 
Estimating uncertainties of Neural Network predictions paves the way towards more reliable and trustful text classifications. However, common uncertainty estimation approaches remain as black-boxes without explaining which features have led to the uncertainty of a prediction. This hinders users from understanding the cause of unreliable model behaviour. We introduce an approach to decompose and visualize the uncertainty of text classifiers at the level of words. Our approach builds on top of Recurrent Neural Networks and Bayesian modelling in order to provide detailed explanations of uncertainties, enabling a deeper reasoning about unreliable model behaviours. We conduct a preliminary experiment to check the impact and correctness of our approach. By explaining and investigating the predictive uncertainties of a sentiment analysis task, we argue that our approach is able to provide a more profound understanding of artificial decision making.
URI: http://hdl.handle.net/20.500.12738/12796
ISBN: 978-1-952148-27-9
Einrichtung: Forschungsgruppe Big Data Lab 
Department Informatik 
Fakultät Technik und Informatik 
Dokumenttyp: Konferenzveröffentlichung
Enthalten in den Sammlungen:Publications without full text

Zur Langanzeige

Seitenansichten

54
checked on 27.12.2024

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons