DC FieldValueLanguage
dc.contributor.authorAndersen, Jakob Smedegaard-
dc.contributor.authorSchöner, Tom-
dc.contributor.authorMaalej, Walid-
dc.date.accessioned2022-03-23T12:03:04Z-
dc.date.available2022-03-23T12:03:04Z-
dc.date.issued2020-
dc.identifier.isbn978-1-952148-27-9en_US
dc.identifier.urihttp://hdl.handle.net/20.500.12738/12796-
dc.description.abstractEstimating uncertainties of Neural Network predictions paves the way towards more reliable and trustful text classifications. However, common uncertainty estimation approaches remain as black-boxes without explaining which features have led to the uncertainty of a prediction. This hinders users from understanding the cause of unreliable model behaviour. We introduce an approach to decompose and visualize the uncertainty of text classifiers at the level of words. Our approach builds on top of Recurrent Neural Networks and Bayesian modelling in order to provide detailed explanations of uncertainties, enabling a deeper reasoning about unreliable model behaviours. We conduct a preliminary experiment to check the impact and correctness of our approach. By explaining and investigating the predictive uncertainties of a sentiment analysis task, we argue that our approach is able to provide a more profound understanding of artificial decision making.en
dc.language.isoenen_US
dc.publisherInternational Committee on Computational Linguistics ; Association for Computational Linguisticsen_US
dc.subject.ddc004: Informatiken_US
dc.titleWord-Level Uncertainty Estimation for Black-Box Text Classifiers using RNNsen
dc.typeinProceedingsen_US
dc.relation.conferenceInternational Conference on Computational Linguistics 2020en_US
local.contributorCorporate.editorAssociation for Computational Linguistics-
local.contributorPerson.editorScott, Donia-
local.contributorPerson.editorBel, Nuria-
local.contributorPerson.editorZong, Chengqing-
tuhh.container.endpage5546en_US
tuhh.container.startpage5541en_US
tuhh.oai.showtrueen_US
tuhh.publication.instituteForschungsgruppe Big Data Laben_US
tuhh.publication.instituteDepartment Informatiken_US
tuhh.publication.instituteFakultät Technik und Informatiken_US
tuhh.publisher.doi10.18653/v1/2020.coling-main.484-
tuhh.relation.ispartofseriesThe 28th International Conference on Computational Linguistics - proceedings of the conference : December 8-13, 2020, Barcelona, Spain (Online) : COLING 2020en_US
tuhh.type.opusInProceedings (Aufsatz / Paper einer Konferenz etc.)-
dc.rights.cchttps://creativecommons.org/licenses/by/4.0/en_US
dc.type.casraiConference Paper-
dc.type.dinicontributionToPeriodical-
dc.type.drivercontributionToPeriodical-
dc.type.statusinfo:eu-repo/semantics/publishedVersionen_US
dcterms.DCMITypeText-
item.creatorGNDAndersen, Jakob Smedegaard-
item.creatorGNDSchöner, Tom-
item.creatorGNDMaalej, Walid-
item.fulltextNo Fulltext-
item.creatorOrcidAndersen, Jakob Smedegaard-
item.creatorOrcidSchöner, Tom-
item.creatorOrcidMaalej, Walid-
item.seriesrefThe 28th International Conference on Computational Linguistics - proceedings of the conference : December 8-13, 2020, Barcelona, Spain (Online) : COLING 2020-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.tuhhseriesidThe 28th International Conference on Computational Linguistics - proceedings of the conference : December 8-13, 2020, Barcelona, Spain (Online) : COLING 2020-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.openairetypeinProceedings-
crisitem.author.deptDepartment Informatik-
crisitem.author.orcid0000-0001-8606-9743-
crisitem.author.parentorgFakultät Technik und Informatik-
Appears in Collections:Publications without full text
Show simple item record

Page view(s)

54
checked on Dec 27, 2024

Google ScholarTM

Check

HAW Katalog

Check

Add Files to Item

Note about this record


This item is licensed under a Creative Commons License Creative Commons