Verlagslink DOI: 10.3233/FAIA210474
Titel: A Knowledge-Model for AI-Driven Tutoring Systems
Sprache: Englisch
Autorenschaft: Baumgart, Andreas  
Madany Mamlouk, Amir 
Herausgeber*In: Tropmann-Frick, Marina  
Jaakkola, Hannu 
Thalheim, Bernhard 
Kiyoki, Yasushi 
Yoshida, Naofumi 
Schlagwörter: Competence-Based Learning; Knowledge Concept; Ontology; Web- Service; Taxonomy of Knowledge; Web-Application
Erscheinungsdatum: 2021
Verlag: IOS Press
Teil der Schriftenreihe: Information Modelling and Knowledge Bases XXXIII 
Zeitschrift oder Schriftenreihe: Frontiers in artificial intelligence and applications : FAIA 
Zeitschriftenband: 343
Anfangsseite: 1
Endseite: 18
Konferenz: International Conference on Information Modelling and Knowledge Bases 2021 
Zusammenfassung: 
A powerful new complement to traditional synchronous teaching is emerging: intelligent tutoring systems. The narrative: A learner interacts with a digital agent. The agent reviews, selects and proposes individually tailored educational resources and processes – i.e. a meaningful succession of instructions, tests or groupwork. The aim is to make personal tutored learning the new norm in higher education – especially in groups with heterogeneous educational backgrounds. The challenge: Today, there are no suitable data that allow computer-agents to learn how to take reasonable decisions. Available educational resources cannot be addressed by a computer logic because up to now they have not been tagged with machine-readable information at all or these have not been provided uniformly. And what’s worse: there are no agreed conceptual and structured models of what we understand by „learning“, how this model-to-be could be implemented in a computer algorithm and what those explicit decisions are that a tutoring system could take. So, a prerequisite for any future digital agent is to have a structured, computer-accessible model of “knowledge”. This model is required to qualify and quantify individual learning, to allow the association of resources as learning objects and to provide a base to operationalize learning for AI-based agents. We will suggest a conceptual model of “knowledge” based on a variant of Bloom’s taxonomy, transfer this concept of cognitive learning objectives into an ontology and describe an implementation into a web-based database application. The approach has been employed to model the basics of abstract knowledge in engineering mechanics at university-level. This paper addresses interdisciplinary aspects ranging from a teaching methodology, the taxonomy of knowledge in cognitive science, over a database-application for ontologies to an implementation of this model in a Grails service. We aim to deliver this web-based ontology, its user-interfaces and APIs into a research network that qualifies AI-based agents for competence-based tutoring.
URI: http://hdl.handle.net/20.500.12738/12877
ISBN: 978-1-64368-242-6
978-1-64368-243-3
ISSN: 1879-8314
Einrichtung: Department Maschinenbau und Produktion 
Fakultät Technik und Informatik 
Dokumenttyp: Konferenzveröffentlichung
Enthalten in den Sammlungen:Publications without full text

Zur Langanzeige

Seitenansichten

55
checked on 27.12.2024

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons