Verlagslink DOI: 10.3233/FAIA210488
Titel: Towards Drug Repurposing for COVID-19 Treatment Using Literature- ased Discovery
Sprache: Englisch
Autorenschaft: Tropmann-Frick, Marina  
Schreier, Tobias Cedric 
Herausgeber*In: Tropmann-Frick, Marina  
Jaakkola, Hannu 
Thalheim, Bernhard 
Kiyoki, Yasushi 
Yoshida, Naofumi 
Schlagwörter: Arrowsmith; BITOLA; COVID-19; drug repurposing; literature-based discovery; SemBT
Erscheinungsdatum: 2021
Verlag: IOS Press
Teil der Schriftenreihe: Information Modelling and Knowledge Bases XXXIII 
Zeitschrift oder Schriftenreihe: Frontiers in artificial intelligence and applications : FAIA 
Zeitschriftenband: 343
Anfangsseite: 215
Endseite: 232
Konferenz: International Conference on Information Modelling and Knowledge Bases 2021 
Zusammenfassung: 
The ongoing COVID-19 pandemic brings new challenges and risks in various areas of our lives. The lack of viable treatments is one of the issues in coping with the pandemic. Developing a new drug usually takes 10-15 years, which is an issue since treatments for COVID-19 are required now. As an alternative to developing new drugs, the repurposing of existing drugs has been proposed. One of the scientific methods that can be used for drug repurposing is literature-based discovery (LBD). LBD uncovers hidden knowledge in the scientific literature and has already successfully been used for drug repurposing in the past. We provide an overview of existing LBD methods that can be utilized to search for new COVID-19 treatments. Furthermore, we compare the three LBD systems Arrowsmith, BITOLA, and SemBT, concerning their suitability for this task. Our research shows that semantic models appear to be the most suitable for drug repurposing. Nevertheless, Arrowsmith currently yields the best results, despite using a co-occurrence model instead of a semantic model. However, it achieves the good results because BITOLA and SemBT currently do not allow for COVID-19 related searches. Once this limitation is removed, SemBT, which uses a semantic model, will be the better choice for the task.
URI: http://hdl.handle.net/20.500.12738/12878
ISBN: 978-1-64368-242-6
978-1-64368-243-3
ISSN: 1879-8314
Einrichtung: Department Informatik 
Fakultät Technik und Informatik 
Dokumenttyp: Konferenzveröffentlichung
Enthalten in den Sammlungen:Publications without full text

Zur Langanzeige

Seitenansichten

107
checked on 27.12.2024

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons