Please use this identifier to cite or link to this item: https://doi.org/10.48441/4427.428
DC FieldValueLanguage
dc.contributor.authorArthur, Richard-
dc.contributor.authorAntonczyk, Sebastian-
dc.contributor.authorOff, Sandra-
dc.contributor.authorScherer, Paul A.-
dc.date.accessioned2022-04-28T12:39:48Z-
dc.date.available2022-04-28T12:39:48Z-
dc.date.issued2022-01-02-
dc.identifier.issn2306-5354en_US
dc.identifier.urihttp://hdl.handle.net/20.500.12738/12979-
dc.description.abstractLignocellulosic residues, such as straw, are currently considered as candidates for biogas production. Therefore, straw fermentations were performed to quantitatively estimate methane yields and cell counts, as well as to qualitatively determine the microbiome. Six fully automated, continuously stirred biogas reactors were used: three mesophilic (41 °C) and three thermophilic (58 °C). They were fed every 8 h with milled wheat straw suspension in a defined, buffered salt solution, called 'synthetic manure'. Total reflection X-ray fluorescence spectrometry analyses showed nickel and tungsten deficiency in the straw suspension. Supplementation of nickel and subsequently tungsten, or with an increasing combined dosage of both elements, resulted in a final concentration of approximately 0.1 mg/L active, dissolved tungsten ions, which caused an increase of the specific methane production, up to 63% under mesophilic and 31% under thermophilic conditions. That is the same optimal range for pure cultures of methanogens or bacteria found in literature. A simultaneous decrease of volatile fatty acids occurred. The Ni/W effect occurred with all three organic loading rates, being 4.5, 7.5, and 9.0 g volatile solids per litre and day, with a concomitant hydraulic retention time of 18, 10, or 8 days, respectively. A maximum specific methane production of 0.254 m3 CH4, under standard temperature and pressure per kg volatile solids (almost 90% degradation), was obtained. After the final supplementation of tungsten, the cell counts of methanogens increased by 300%, while the total microbial cell counts increased by only 3-62%. The mesophilic methanogenic microflora was shifted from the acetotrophic Methanosaeta to the hydrogenotrophic Methanoculleus (85%) by tungsten, whereas the H2-CO2-converter, Methanothermobacter, always dominated in the thermophilic fermenters.en
dc.description.sponsorshipHochschule für Angewandte Wissenschaften Hamburgen_US
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.relation.ispartofBioengineeringen_US
dc.subjectCSTRen_US
dc.subjectTXRFen_US
dc.subjectbiogasen_US
dc.subjectcell counten_US
dc.subjectfermentationen_US
dc.subjectmicrobiomeen_US
dc.subjectstrawen_US
dc.subjecttrace elementsen_US
dc.subject.ddc570: Biowissenschaften, Biologieen_US
dc.titleMesophilic and thermophilic anaerobic digestion of wheat straw in a CSTR system with 'Synthetic Manure' : impact of nickel and tungsten on methane yields, cell count, and microbiomeen
dc.typeArticleen_US
dc.identifier.doi10.48441/4427.428-
dc.description.versionPeerRevieweden_US
local.contributorPerson.editorKleinsteuber, Sabine-
openaire.rightsinfo:eu-repo/semantics/openAccessen_US
tuhh.container.issue1en_US
tuhh.container.volume9en_US
tuhh.identifier.urnurn:nbn:de:gbv:18302-reposit-145844-
tuhh.oai.showtrueen_US
tuhh.publication.instituteDepartment Biotechnologieen_US
tuhh.publication.instituteFakultät Life Sciencesen_US
tuhh.publisher.doi10.3390/bioengineering9010013-
tuhh.type.opus(wissenschaftlicher) Artikel-
dc.rights.cchttps://creativecommons.org/licenses/by/4.0/en_US
dc.type.casraiJournal Article-
dc.type.diniarticle-
dc.type.driverarticle-
dc.type.statusinfo:eu-repo/semantics/publishedVersionen_US
dcterms.DCMITypeText-
tuhh.container.articlenumber13en_US
local.comment.externalArthur, R.; Antonczyk, S.;Off, S.; Scherer, P.A. Mesophilic and Thermophilic Anaerobic Digestion of Wheat Straw in a CSTR System with ‘Synthetic Manure’: Impact of Nickel and Tungsten on Methane Yields, Cell Count, and Microbiome. Bioengineering 2022, 9, 13. https://doi.org/10.3390/bioengineering9010013. The APC was funded by Hamburg University of Applied Sciences.-
tuhh.apc.statustrueen_US
item.creatorGNDArthur, Richard-
item.creatorGNDAntonczyk, Sebastian-
item.creatorGNDOff, Sandra-
item.creatorGNDScherer, Paul A.-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.creatorOrcidArthur, Richard-
item.creatorOrcidAntonczyk, Sebastian-
item.creatorOrcidOff, Sandra-
item.creatorOrcidScherer, Paul A.-
item.languageiso639-1en-
item.grantfulltextopen-
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
crisitem.author.deptDepartment Biotechnologie-
crisitem.author.deptDepartment Biotechnologie-
crisitem.author.parentorgFakultät Life Sciences-
crisitem.author.parentorgFakultät Life Sciences-
Appears in Collections:Publications with full text
Files in This Item:
File Description SizeFormat
bioengineering-09-00013-v2.pdf3.9 MBAdobe PDFView/Open
Show simple item record

Page view(s)

441
checked on May 1, 2024

Download(s)

103
checked on May 1, 2024

Google ScholarTM

Check

HAW Katalog

Check

Note about this record


This item is licensed under a Creative Commons License Creative Commons