Publisher URL: | https://nbn-resolving.org/urn:nbn:de:gbv:18302-aero2019-07-28.013 https://n2t.net/ark:/13960/t3tv33p1h |
Publisher DOI: | 10.15488/9323 | Title: | Conditions for passenger aircraft minimum fuel consumption, direct operating costs and environmental impact | Language: | English | Authors: | Caers, Brecht | Keywords: | Luftfahrt; Flugzeugaerodynamik; Flugmechanik; Betriebskosten; Flugzeug; Flugtriebwerk; Luftverschmutzung; Energieverbrauch; Tabellenkalkulation; Aeronautics; Cost accounting; Environmental protection; Airplanes; Aerodynamics; Speed; Altitudes; Energy conservation; Global warming; Electronic spreadsheets; aviation; commercial; aircraft; air pollution | Issue Date: | 28-Jul-2022 | Is supplemented by: | 10.7910/DVN/DLZSDK | Abstract: | Purpose – Find optimal flight and design parameters for three objectives: minimum fuel consumption, Direct Operating Costs (DOC), and environmental impact of a passenger jet aircraft. --- Approach – Combining multiple models (this includes aerodynamics, specific fuel consumption, DOC, and equivalent CO2 mass) into one generic model. In this combined model, each objective's importance is determined by a weighting factor. Additionally, the possibility of further optimizing this model by altering an aircraft's wing loading is analyzed. --- Findings – When optimizing for a compromise between economic and ecologic benefits, the general outcome is a reduction in cruise altitude and an unaltered cruise Mach number compared to common practice. Decreasing cruise speed would benefit the environmental impact but has a negative effect on seat-mile cost. An increase in wing loading could further optimize the general outcome. Albeit at the cost of a greater required landing distance, therefore limiting the operational opportunities of this aircraft. --- Research limitations – Most models use estimating equations based on first principles and statistical data. --- Practical implications – The optimal cruise altitude and speed for a specific objective can be approximated for any passenger jet aircraft. --- Social implications – By using a simple approach, the discussion of optimizing aircraft opens up to a level where everyone can participate. --- Value – To find a general answer on how to optimize aviation, operational and design-wise, by using a simple approach. |
URI: | http://hdl.handle.net/20.500.12738/13192 | Institute: | Forschungsgruppe Flugzeugentwurf und -systeme (AERO) Department Fahrzeugtechnik und Flugzeugbau Fakultät Technik und Informatik |
Type: | Thesis | Thesis type: | Master Thesis | Advisor: | Scholz, Dieter |
Appears in Collections: | Theses |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
HAW-TextCaers.pdf | 4.16 MB | Adobe PDF | View/Open |
Note about this record
Export
This item is licensed under a Creative Commons License