Publisher DOI: 10.1016/j.ifacol.2022.07.173
Title: Using low-rank multilinear parameter identification for anomaly detection of building systems
Language: English
Authors: Schnelle, Leona 
Lichtenberg, Gerwald  
Warnecke, Christian 
Editor: Timotheou, Stelios 
Keywords: Parameter identification; Multilinear Models; Tensor Decomposition; Building systems; Anomaly Detection
Issue Date: Jul-2022
Publisher: Elsevier
Book title: 11th IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes : SAFEPROCESS 2022 ; Proceedings
Journal or Series Name: IFAC-PapersOnLine 
Volume: 55
Issue: 6
Startpage: 470
Endpage: 475
Project: Supervision und Optimierung von Neubauten durch Daten-Exploration 
Conference: IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes 2022 
Abstract: 
The paper proposes a new method for anomaly detection based on multilinear low-rank models. No a priori knowledge about the investigated system is needed for data-driven parameter identification of these models. Multilinear parameter identification is able to cover more dynamic phenomena than linear black box identification. A minimal model of rank 1 has a tiny number of parameters which is equal to the dynamic order plus the number of inputs. These multilinear parameters are moreover directly interpretable as each parameter indicates the influence of one corresponding state or input to the next state of the MTI model. As example, the method is demonstrated by an anomaly detection with real data from the HVAC system of a test room.
URI: http://hdl.handle.net/20.500.12738/13248
ISSN: 2405-8963
Institute: Department Medizintechnik 
Fakultät Life Sciences 
Type: Chapter/Article (Proceedings)
Funded by: Bundesministerium für Bildung und Forschung 
Appears in Collections:Publications without full text

Show full item record

Page view(s)

148
checked on Nov 29, 2024

Google ScholarTM

Check

HAW Katalog

Check

Add Files to Item

Note about this record


This item is licensed under a Creative Commons License Creative Commons