DC FieldValueLanguage
dc.contributor.authorSchnelle, Leona-
dc.contributor.authorLichtenberg, Gerwald-
dc.contributor.authorWarnecke, Christian-
dc.date.accessioned2022-08-12T08:08:34Z-
dc.date.available2022-08-12T08:08:34Z-
dc.date.issued2022-07-
dc.identifier.issn2405-8963en_US
dc.identifier.urihttp://hdl.handle.net/20.500.12738/13248-
dc.description.abstractThe paper proposes a new method for anomaly detection based on multilinear low-rank models. No a priori knowledge about the investigated system is needed for data-driven parameter identification of these models. Multilinear parameter identification is able to cover more dynamic phenomena than linear black box identification. A minimal model of rank 1 has a tiny number of parameters which is equal to the dynamic order plus the number of inputs. These multilinear parameters are moreover directly interpretable as each parameter indicates the influence of one corresponding state or input to the next state of the MTI model. As example, the method is demonstrated by an anomaly detection with real data from the HVAC system of a test room.en
dc.description.sponsorshipBundesministerium für Bildung und Forschungen_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofIFAC-PapersOnLineen_US
dc.subjectParameter identificationen_US
dc.subjectMultilinear Modelsen_US
dc.subjectTensor Decompositionen_US
dc.subjectBuilding systemsen_US
dc.subjectAnomaly Detectionen_US
dc.subject.ddc600: Techniken_US
dc.titleUsing low-rank multilinear parameter identification for anomaly detection of building systemsen
dc.typeinProceedingsen_US
dc.relation.conferenceIFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes 2022en_US
local.contributorPerson.editorTimotheou, Stelios-
tuhh.container.endpage475en_US
tuhh.container.issue6en_US
tuhh.container.startpage470en_US
tuhh.container.volume55en_US
tuhh.oai.showtrueen_US
tuhh.publication.instituteDepartment Medizintechniken_US
tuhh.publication.instituteFakultät Life Sciencesen_US
tuhh.publisher.doi10.1016/j.ifacol.2022.07.173-
tuhh.type.opusInProceedings (Aufsatz / Paper einer Konferenz etc.)-
dc.relation.projectSupervision und Optimierung von Neubauten durch Daten-Explorationen_US
dc.rights.cchttps://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.type.casraiConference Paper-
dc.type.dinicontributionToPeriodical-
dc.type.drivercontributionToPeriodical-
dc.type.statusinfo:eu-repo/semantics/publishedVersionen_US
dcterms.DCMITypeText-
tuhh.book.title11th IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes : SAFEPROCESS 2022 ; Proceedings-
item.creatorGNDSchnelle, Leona-
item.creatorGNDLichtenberg, Gerwald-
item.creatorGNDWarnecke, Christian-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.creatorOrcidSchnelle, Leona-
item.creatorOrcidLichtenberg, Gerwald-
item.creatorOrcidWarnecke, Christian-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypeinProceedings-
crisitem.author.deptDepartment Medizintechnik-
crisitem.author.deptDepartment Medizintechnik-
crisitem.author.orcid0000-0001-6032-0733-
crisitem.author.parentorgFakultät Life Sciences-
crisitem.author.parentorgFakultät Life Sciences-
crisitem.project.funderBundesministerium für Bildung und Forschung-
Appears in Collections:Publications without full text
Show simple item record

Page view(s)

148
checked on Nov 29, 2024

Google ScholarTM

Check

HAW Katalog

Check

Add Files to Item

Note about this record


This item is licensed under a Creative Commons License Creative Commons