Verlagslink: https://www.scitepress.org/Papers/2022/111408/111408.pdf
Verlagslink DOI: 10.5220/0011140800003271
Titel: Robust neural network for sim-to-real gap in end-to-end autonomous driving
Sprache: Englisch
Autorenschaft: Pareigis, Stephan  
Maaß, Fynn 
Herausgeber*In: Gini, Giuseppina 
Nijmeijer, Henk 
Burgard, Wolfram 
Filev, Dimitar 
Schlagwörter: Sim-to-Real Gap; End-to-End Learning; Autonomous Driving; Artificial Neural Network; CARLA Simulator; Robust Control; PilotNet
Erscheinungsdatum: 2022
Verlag: SciTePress
Teil der Schriftenreihe: Proceedings of the 19th International Conference on Informatics in Control, Automation and Robotics (ICINCO 2022) 
Bandangabe: 1
Anfangsseite: 113
Endseite: 119
Konferenz: International Conference on Informatics in Control, Automation and Robotics 2022 
Zusammenfassung: 
A neural network architecture for end-to-end autonomous driving is presented, which is robust against discrepancies in system dynamics during the training process and in application. The proposed network architecture presents a first step to alleviate the simulation to reality gap with respect to differences in system dynamics. A vehicle is trained to drive inside a given lane in the CARLA simulator. The data is used to train NVIDIA’s PilotNet. When an offset is given to the steering angle of the vehicle while the trained network is being applied, PilotNet will not keep the vehicle inside the lane as expected. A new architecture is proposed called PilotNet∆, which is robust against steering angle offsets. Experiments in the simulator show that the vehicle will stay in the lane, although the steering properties of the vehicle differ.
URI: http://hdl.handle.net/20.500.12738/13262
ISBN: 978-989-758-585-2
ISSN: 2184-2809
Einrichtung: Department Informatik 
Fakultät Technik und Informatik 
Dokumenttyp: Konferenzveröffentlichung
Enthalten in den Sammlungen:Publications without full text

Zur Langanzeige

Seitenansichten

176
checked on 29.11.2024

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons