DC ElementWertSprache
dc.contributor.authorPareigis, Stephan-
dc.contributor.authorMaaß, Fynn-
dc.date.accessioned2022-08-22T11:26:50Z-
dc.date.available2022-08-22T11:26:50Z-
dc.date.issued2022-
dc.identifier.isbn978-989-758-585-2en_US
dc.identifier.issn2184-2809en_US
dc.identifier.urihttp://hdl.handle.net/20.500.12738/13262-
dc.description.abstractA neural network architecture for end-to-end autonomous driving is presented, which is robust against discrepancies in system dynamics during the training process and in application. The proposed network architecture presents a first step to alleviate the simulation to reality gap with respect to differences in system dynamics. A vehicle is trained to drive inside a given lane in the CARLA simulator. The data is used to train NVIDIA’s PilotNet. When an offset is given to the steering angle of the vehicle while the trained network is being applied, PilotNet will not keep the vehicle inside the lane as expected. A new architecture is proposed called PilotNet∆, which is robust against steering angle offsets. Experiments in the simulator show that the vehicle will stay in the lane, although the steering properties of the vehicle differ.en
dc.language.isoenen_US
dc.publisherSciTePressen_US
dc.subjectSim-to-Real Gapen_US
dc.subjectEnd-to-End Learningen_US
dc.subjectAutonomous Drivingen_US
dc.subjectArtificial Neural Networken_US
dc.subjectCARLA Simulatoren_US
dc.subjectRobust Controlen_US
dc.subjectPilotNeten_US
dc.subject.ddc620: Ingenieurwissenschaftenen_US
dc.titleRobust neural network for sim-to-real gap in end-to-end autonomous drivingen
dc.typeinProceedingsen_US
dc.relation.conferenceInternational Conference on Informatics in Control, Automation and Robotics 2022en_US
local.contributorPerson.editorGini, Giuseppina-
local.contributorPerson.editorNijmeijer, Henk-
local.contributorPerson.editorBurgard, Wolfram-
local.contributorPerson.editorFilev, Dimitar-
tuhh.container.endpage119en_US
tuhh.container.startpage113en_US
tuhh.oai.showtrueen_US
tuhh.publication.instituteDepartment Informatiken_US
tuhh.publication.instituteFakultät Technik und Informatiken_US
tuhh.publisher.doi10.5220/0011140800003271-
tuhh.publisher.urlhttps://www.scitepress.org/Papers/2022/111408/111408.pdf-
tuhh.relation.ispartofseriesProceedings of the 19th International Conference on Informatics in Control, Automation and Robotics (ICINCO 2022)en_US
tuhh.relation.ispartofseriesnumber1en_US
tuhh.type.opusInProceedings (Aufsatz / Paper einer Konferenz etc.)-
dc.rights.cchttps://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.type.casraiConference Paper-
dc.type.dinicontributionToPeriodical-
dc.type.drivercontributionToPeriodical-
dc.type.statusinfo:eu-repo/semantics/publishedVersionen_US
dcterms.DCMITypeText-
item.seriesrefProceedings of the 19th International Conference on Informatics in Control, Automation and Robotics (ICINCO 2022);1-
item.tuhhseriesidProceedings of the 19th International Conference on Informatics in Control, Automation and Robotics (ICINCO 2022)-
item.creatorGNDPareigis, Stephan-
item.creatorGNDMaaß, Fynn-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.creatorOrcidPareigis, Stephan-
item.creatorOrcidMaaß, Fynn-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypeinProceedings-
crisitem.author.deptDepartment Informatik-
crisitem.author.orcid0000-0002-7238-0976-
crisitem.author.parentorgFakultät Technik und Informatik-
Enthalten in den Sammlungen:Publications without full text
Zur Kurzanzeige

Seitenansichten

176
checked on 29.11.2024

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons