DC ElementWertSprache
dc.contributor.authorBenjamin, Jesse Josua-
dc.contributor.authorKinkeldey, Christoph-
dc.contributor.authorMüller-Birn, Claudia-
dc.contributor.authorKorjakow, Tim-
dc.contributor.authorHerbst, Eva-Maria-
dc.date.accessioned2022-11-11T08:49:19Z-
dc.date.available2022-11-11T08:49:19Z-
dc.date.issued2022-
dc.identifier.issn2573-0142en_US
dc.identifier.urihttp://hdl.handle.net/20.500.12738/13440-
dc.description.abstractDuring a research project in which we developed a machine learning (ML) driven visualization system for non-ML experts, we reflected on interpretability research in ML, computer-supported collaborative work and human-computer interaction. We found that while there are manifold technical approaches, these often focus on ML experts and are evaluated in decontextualized empirical studies. We hypothesized that participatory design research may support the understanding of stakeholders' situated sense-making in our project, yet, found guidance regarding ML interpretability inexhaustive. Building on philosophy of technology, we formulated explanation strategies as an empirical-analytical lens explicating how technical explanations mediate the contextual preferences concerning people's interpretations. In this paper, we contribute a report of our proof-of-concept use of explanation strategies to analyze a co-design workshop with non-ML experts, methodological implications for participatory design research, design implications for explanations for non-ML experts and suggest further investigation of technological mediation theories in the ML interpretability space.en
dc.language.isoenen_US
dc.publisherAssociation for Computing Machinery (ACM)en_US
dc.relation.ispartofProceedings of the ACM on human-computer interactionen_US
dc.subjectexplainable machine learningen_US
dc.subjectexplanation strategiesen_US
dc.subjectparticipatory designen_US
dc.subjectpost-phenomenologyen_US
dc.subjectsubject-matter expertsen_US
dc.subjectHuman-Computer Interactionen_US
dc.subjectArtificial Intelligenceen_US
dc.subjectComputers and Societyen_US
dc.subjectComputer Scienceen_US
dc.subject.ddc004: Informatiken_US
dc.titleExplanation strategies as an empirical-analytical lens for socio-technical contextualization of machine learning interpretabilityen
dc.typeinProceedingsen_US
dc.description.versionPeerRevieweden_US
tuhh.container.endpage39:25en_US
tuhh.container.issueGROUPen_US
tuhh.container.startpage39:1en_US
tuhh.container.volume6en_US
tuhh.oai.showtrueen_US
tuhh.publication.instituteFreie Universität Berlinen_US
tuhh.publisher.doi10.1145/3492858-
tuhh.type.opusInProceedings (Aufsatz / Paper einer Konferenz etc.)-
dc.rights.cchttps://creativecommons.org/licenses/by-sa/4.0/en_US
dc.type.casraiConference Paper-
dc.type.dinicontributionToPeriodical-
dc.type.drivercontributionToPeriodical-
dc.type.statusinfo:eu-repo/semantics/publishedVersionen_US
dcterms.DCMITypeText-
tuhh.container.articlenumber3492858-
local.comment.externalarticle number : 39en_US
item.creatorGNDBenjamin, Jesse Josua-
item.creatorGNDKinkeldey, Christoph-
item.creatorGNDMüller-Birn, Claudia-
item.creatorGNDKorjakow, Tim-
item.creatorGNDHerbst, Eva-Maria-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.creatorOrcidBenjamin, Jesse Josua-
item.creatorOrcidKinkeldey, Christoph-
item.creatorOrcidMüller-Birn, Claudia-
item.creatorOrcidKorjakow, Tim-
item.creatorOrcidHerbst, Eva-Maria-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypeinProceedings-
crisitem.author.deptDepartment Information und Medienkommunikation-
crisitem.author.orcid0000-0001-5669-6295-
crisitem.author.parentorgFakultät Design, Medien und Information-
Enthalten in den Sammlungen:Publications without full text
Zur Kurzanzeige

Seitenansichten

72
checked on 29.11.2024

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons