Fulltext available Open Access
DC FieldValueLanguage
dc.contributor.advisorSchiemann, Thomas-
dc.contributor.authorSullivan, Philip James-
dc.date.accessioned2022-12-09T13:28:18Z-
dc.date.available2022-12-09T13:28:18Z-
dc.date.created2021-07-10-
dc.date.issued2022-12-09-
dc.identifier.urihttp://hdl.handle.net/20.500.12738/13534-
dc.description.abstractA deep learning approach for the classification of protein localizations in microscopic biological cell images is presented here. A pretrained segmentation network is utilized to extract single cells from cell population images. A convolutional neural network (CNN) is then trained on the extracted cells. The CNN was able to achieve an F1 score of 0.42 on the training dataset and 0.39 on the validation dataset. The results show that the network can classify some protein localizations with higher accuracy than others.en
dc.language.isoenen_US
dc.subject.ddc570: Biowissenschaften, Biologieen_US
dc.titleSingle cell classification : An approach to understand the diversity of protein localizationen
dc.typeThesisen_US
openaire.rightsinfo:eu-repo/semantics/openAccessen_US
thesis.grantor.departmentFakultät Life Sciencesen_US
thesis.grantor.departmentDepartment Medizintechniken_US
thesis.grantor.universityOrInstitutionHochschule für Angewandte Wissenschaften Hamburgen_US
tuhh.contributor.refereeGhosh, Ankit-
tuhh.identifier.urnurn:nbn:de:gbv:18302-reposit-153390-
tuhh.oai.showtrueen_US
tuhh.publication.instituteFakultät Life Sciencesen_US
tuhh.publication.instituteDepartment Medizintechniken_US
tuhh.type.opusBachelor Thesis-
dc.type.casraiSupervised Student Publication-
dc.type.dinibachelorThesis-
dc.type.driverbachelorThesis-
dc.type.statusinfo:eu-repo/semantics/publishedVersionen_US
dc.type.thesisbachelorThesisen_US
dcterms.DCMITypeText-
tuhh.dnb.statusdomain-
item.advisorGNDSchiemann, Thomas-
item.creatorGNDSullivan, Philip James-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_46ec-
item.creatorOrcidSullivan, Philip James-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.openairetypeThesis-
Appears in Collections:Theses
Files in This Item:
File Description SizeFormat
SullivanPhilipBA_geschwärzt.pdf13.48 MBAdobe PDFView/Open
Show simple item record

Page view(s)

76
checked on Nov 28, 2024

Download(s)

39
checked on Nov 28, 2024

Google ScholarTM

Check

HAW Katalog

Check

Note about this record


Items in REPOSIT are protected by copyright, with all rights reserved, unless otherwise indicated.