Verlagslink DOI: 10.1109/ICASSP.2001.941160
Titel: Optimized neural networks for modeling of loudspeaker directivity diagrams
Sprache: Englisch
Autorenschaft: Wilk, Eva 
Wilk, Jan 
Erscheinungsdatum: 2002
Verlag: IEEE
Teil der Schriftenreihe: 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing : 7-11 May, 2001, Salt Palace Convention Center, Salt Lake City, Utah, USA ; proceedings 
Anfangsseite: 1285
Endseite: 1288
Konferenz: IEEE International Conference on Acoustics, Speech, and Signal Processing 2001 
Zusammenfassung: 
For the electro-acoustical simulation of sound reinforcement systems, calculation and simulation of the sound field distribution requires measurement and storage of the frequency dependent directivity characteristics (level and phase) of the used loudspeaker models. In modern simulation programs, the spatial resolution can be less than five degrees in third- or even twelfth-octave frequency bands. Therefore, modeling of the directivity diagram of loudspeakers can reduce storage place and simulation time and may even increase the accuracy of the simulation. Modeling - in the sense of mapping the resulting enormous amount of measured data - can be realized very efficiently and with small approximation error using second order neural networks. To reduce the model development time, we in addition created a new adaptation rule for feedforward neural networks with improved convergence behavior. This is achieved only by using the training data and the output error to analytically determine values for the learning parameters' momentum and learning rate in each learning step. We show the advantages of using neural networks with optimized learning parameters by the example of modeling the measured directional response patterns of two real loudspeakers. For measurement we used maximum length sequences (MLSSA).
URI: http://hdl.handle.net/20.500.12738/13658
ISBN: 0-7803-7041-4
0-7803-7042-2
978-0-7803-7042-5
978-0-7803-7041-8
Begutachtungsstatus: Diese Version hat ein Peer-Review-Verfahren durchlaufen (Peer Review)
Einrichtung: Department Medientechnik 
Fakultät Design, Medien und Information 
Dokumenttyp: Konferenzveröffentlichung
Enthalten in den Sammlungen:Publications without full text

Zur Langanzeige

Seitenansichten

107
checked on 03.04.2025

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.