Please use this identifier to cite or link to this item: https://doi.org/10.48441/4427.768
DC FieldValueLanguage
dc.contributor.authorLins, Christian-
dc.contributor.authorHein, Andreas-
dc.date.accessioned2023-05-11T14:19:17Z-
dc.date.available2023-05-11T14:19:17Z-
dc.date.issued2022-10-18-
dc.identifier.issn1471-2474en_US
dc.identifier.urihttp://hdl.handle.net/20.500.12738/13696-
dc.description.abstractBackground: Despite advancing automation, employees in many industrial and service occupations still have to perform physically intensive work that may have negative effects on the health of the musculoskeletal system. For targeted preventive measures, precise knowledge of the work postures and movements performed is necessary. Methods: Prototype smart work clothes equipped with 15 inertial sensors were used to record reference body postures of 20 subjects. These reference postures were used to create a software-based posture classifier according to the Ovako Working Posture Analysing System (OWAS) by means of an evolutionary training algorithm. Results: A total of 111,275 posture shots were recorded and used for training the classifier. The results show that smart workwear, with the help of evolutionary trained software classifiers, is in principle capable of detecting harmful postures of its wearer. The detection rate of the evolutionary trained classifier (a¯ ccr= 0.35 for the postures of the back, a¯ ccr= 0.64 for the arms, and a¯ ccr= 0.25 for the legs) outperforms that of a TensorFlow trained classifying neural network. Conclusions: In principle, smart workwear – as prototypically shown in this paper – can be a helpful tool for assessing an individual’s risk for work-related musculoskeletal disorders. Numerous potential sources of error have been identified that can affect the detection accuracy of software classifiers required for this purpose.en
dc.description.sponsorshipHochschule für Angewandte Wissenschaften Hamburgen_US
dc.language.isoenen_US
dc.publisherBioMed Centralen_US
dc.relation.ispartofBMC musculoskeletal disordersen_US
dc.subjectInertial sensorsen_US
dc.subjectNeuroevolutionen_US
dc.subjectNon-neutral posturesen_US
dc.subjectWork-related musculoskeletal disordersen_US
dc.subject.ddc610: Medizinen_US
dc.titleClassification of body postures using smart workwearen
dc.typeArticleen_US
dc.identifier.doi10.48441/4427.768-
dc.description.versionPeerRevieweden_US
openaire.rightsinfo:eu-repo/semantics/openAccessen_US
tuhh.container.issue1en_US
tuhh.container.volume23en_US
tuhh.identifier.urnurn:nbn:de:gbv:18302-reposit-155457-
tuhh.oai.showtrueen_US
tuhh.publication.instituteDepartment Informatiken_US
tuhh.publication.instituteFakultät Technik und Informatiken_US
tuhh.publisher.doi10.1186/s12891-022-05821-9-
tuhh.type.opus(wissenschaftlicher) Artikel-
dc.rights.cchttps://creativecommons.org/licenses/by/4.0/en_US
dc.type.casraiJournal Article-
dc.type.diniarticle-
dc.type.driverarticle-
dc.type.statusinfo:eu-repo/semantics/publishedVersionen_US
dcterms.DCMITypeText-
tuhh.container.articlenumber921en_US
local.comment.externalLins, C., Hein, A. Classification of body postures using smart workwear. BMC Musculoskelet Disord 23, 921 (2022), https://doi.org/10.1186/s12891-022-05821-9. The APC was funded by Hamburg University of Applied Sciences.en_US
tuhh.apc.statustrueen_US
item.creatorGNDLins, Christian-
item.creatorGNDHein, Andreas-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.creatorOrcidLins, Christian-
item.creatorOrcidHein, Andreas-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.openairetypeArticle-
crisitem.author.deptDepartment Informatik-
crisitem.author.orcid0000-0003-3714-0069-
crisitem.author.parentorgFakultät Technik und Informatik-
Appears in Collections:Publications with full text
Files in This Item:
File Description SizeFormat
Lins_Hein_body_postures_BMC_MD_921.pdf2.41 MBAdobe PDFView/Open
Show simple item record

Page view(s)

307
checked on Nov 21, 2024

Download(s)

63
checked on Nov 21, 2024

Google ScholarTM

Check

HAW Katalog

Check

Note about this record


This item is licensed under a Creative Commons License Creative Commons