DC ElementWertSprache
dc.contributor.authorAshkavand, Mostafa-
dc.contributor.authorHeineken, Wolfram-
dc.contributor.authorBirth, Torsten-
dc.date.accessioned2023-05-23T14:07:16Z-
dc.date.available2023-05-23T14:07:16Z-
dc.date.issued2023-05-15-
dc.identifier.issn2227-9717en_US
dc.identifier.urihttp://hdl.handle.net/20.500.12738/13733-
dc.description.abstractThrough utilization of state-of-the-art power-to-x technology, biological methanation is a novel method to capture the intermittent electricity generated by renewable energy sources. In this process, biomass grows in a liquid solution by consuming H2 and CO2 and produces CH4. This study aims to improve the accuracy and comprehensibility of an initial bio-methanation model by reviewing and comparing existing technologies and methods, correcting miswritten equations, adding complementary equations, and introducing a new initialization approach. In addition, a mean value approach was used for calculating the axial mixing coefficients. Gas–liquid mass transfer in the reactor, along with other aspects, is considered the most challenging aspect of the biological methanation process due to hydrogen’s low solubility. This highlights the need for a modeling approach to improve understanding and optimize the design of the process. The improved MATLAB code was used to test different variations of parameters in the reactor and observe their effects on the system’s performance. The model was validated using experimental cases, and the results indicate that it is more accurate than Inkeri’s for certain parameter variations. Moreover, it demonstrates better accuracy in depicting the pressure effect. The sensitivity analysis revealed that liquid recycle constant λ had little effect on methane concentration, while impeller diameter dim and reactor diameter dre had significant impacts. Axial mixing constants b1 and b2 and biological kinetics constants kD, µmax, and mX had relatively small effects. Overall, the study presents a more comprehensive bio-methanation model that could be used to improve the performance of industrial reactors.en
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.relation.ispartofProcessesen_US
dc.subjectbiological methanationen_US
dc.subjectpower-to-methaneen_US
dc.subjectgas–liquid mass transferen_US
dc.subjectnumerical modelingen_US
dc.subject.ddc570: Biowissenschaften, Biologieen_US
dc.titleProcess simulation of power-to-x systems : modeling and simulation of biological methanationen
dc.typeArticleen_US
dc.description.versionPeerRevieweden_US
local.contributorCorporate.editorDimitrova, Neli-
tuhh.container.issue5en_US
tuhh.container.volume11en_US
tuhh.oai.showtrueen_US
tuhh.publication.instituteDepartment Maschinenbau und Produktionen_US
tuhh.publication.instituteFakultät Technik und Informatiken_US
tuhh.publisher.doi10.3390/pr11051510-
tuhh.type.opus(wissenschaftlicher) Artikel-
dc.rights.cchttps://creativecommons.org/licenses/by/4.0/en_US
dc.type.casraiJournal Article-
dc.type.diniarticle-
dc.type.driverarticle-
dc.type.statusinfo:eu-repo/semantics/publishedVersionen_US
dcterms.DCMITypeText-
local.comment.externalarticle number : 1510en_US
item.grantfulltextnone-
item.creatorGNDAshkavand, Mostafa-
item.creatorGNDHeineken, Wolfram-
item.creatorGNDBirth, Torsten-
item.cerifentitytypePublications-
item.creatorOrcidAshkavand, Mostafa-
item.creatorOrcidHeineken, Wolfram-
item.creatorOrcidBirth, Torsten-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.fulltextNo Fulltext-
item.openairetypeArticle-
crisitem.author.deptDepartment Maschinenbau und Produktion-
crisitem.author.orcid0000-0002-6056-5164-
crisitem.author.parentorgFakultät Technik und Informatik-
Enthalten in den Sammlungen:Publications without full text
Zur Kurzanzeige

Seitenansichten

124
checked on 03.04.2025

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons