Publisher DOI: 10.1186/s13636-022-00266-3
Title: Automatic music signal mixing system based on one-dimensional Wave-U-Net autoencoders
Language: English
Authors: Koszewski, Damian 
Görne, Thomas 
Korvel, Grazina 
Kostek, Bozena 
Keywords: Automatic music mixing; Listening tests; Music signal parameterization; Similarity matrix; Wave-U-Net autoencoder
Issue Date: 5-Jan-2023
Publisher: Springer
Journal or Series Name: EURASIP Journal on audio, speech, and music processing 
Volume: 2023
Abstract: 
The purpose of this paper is to show a music mixing system that is capable of automatically mixing separate raw recordings with good quality regardless of the music genre. This work recalls selected methods for automatic audio mixing first. Then, a novel deep model based on one-dimensional Wave-U-Net autoencoders is proposed for automatic music mixing. The model is trained on a custom-prepared dat...
URI: http://hdl.handle.net/20.500.12738/13883
ISSN: 1687-4722
Review status: This version was peer reviewed (peer review)
Institute: Department Medientechnik 
Fakultät Design, Medien und Information 
Type: Article
Additional note: article number: 1 (2023)
Appears in Collections:Publications without full text

Show full item record

Page view(s)

93
checked on Apr 2, 2025

Google ScholarTM

Check

HAW Katalog

Check

Add Files to Item

Note about this record


This item is licensed under a Creative Commons License Creative Commons