Verlagslink DOI: 10.1186/s13636-022-00266-3
Titel: Automatic music signal mixing system based on one-dimensional Wave-U-Net autoencoders
Sprache: Englisch
Autorenschaft: Koszewski, Damian 
Görne, Thomas 
Korvel, Grazina 
Kostek, Bozena 
Schlagwörter: Automatic music mixing; Listening tests; Music signal parameterization; Similarity matrix; Wave-U-Net autoencoder
Erscheinungsdatum: 5-Jan-2023
Verlag: Springer
Zeitschrift oder Schriftenreihe: EURASIP Journal on audio, speech, and music processing 
Zeitschriftenband: 2023
Zusammenfassung: 
The purpose of this paper is to show a music mixing system that is capable of automatically mixing separate raw recordings with good quality regardless of the music genre. This work recalls selected methods for automatic audio mixing first. Then, a novel deep model based on one-dimensional Wave-U-Net autoencoders is proposed for automatic music mixing. The model is trained on a custom-prepared database. Mixes created using the proposed system are compared with amateur, state-of-the-art software, and professional mixes prepared by audio engineers. The results obtained prove that mixes created automatically by Wave-U-Net can objectively be evaluated as highly as mixes prepared professionally. This is also confirmed by the statistical analysis of the results of the conducted listening tests. Moreover, the results show a strong correlation between the experience of the listeners in mixing and the likelihood of a higher rating of the Wave-U-Net-based and professional mixes than the amateur ones or the mix prepared using state-of-the-art software. These results are also confirmed by the outcome of the similarity matrix-based analysis.
URI: http://hdl.handle.net/20.500.12738/13883
ISSN: 1687-4722
Begutachtungsstatus: Diese Version hat ein Peer-Review-Verfahren durchlaufen (Peer Review)
Einrichtung: Department Medientechnik 
Fakultät Design, Medien und Information 
Dokumenttyp: Zeitschriftenbeitrag
Hinweise zur Quelle: article number: 1 (2023)
Enthalten in den Sammlungen:Publications without full text

Zur Langanzeige

Seitenansichten

54
checked on 28.11.2024

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons