DC ElementWertSprache
dc.contributor.authorKoszewski, Damian-
dc.contributor.authorGörne, Thomas-
dc.contributor.authorKorvel, Grazina-
dc.contributor.authorKostek, Bozena-
dc.date.accessioned2023-06-14T13:52:17Z-
dc.date.available2023-06-14T13:52:17Z-
dc.date.issued2023-01-05-
dc.identifier.issn1687-4722en_US
dc.identifier.urihttp://hdl.handle.net/20.500.12738/13883-
dc.description.abstractThe purpose of this paper is to show a music mixing system that is capable of automatically mixing separate raw recordings with good quality regardless of the music genre. This work recalls selected methods for automatic audio mixing first. Then, a novel deep model based on one-dimensional Wave-U-Net autoencoders is proposed for automatic music mixing. The model is trained on a custom-prepared database. Mixes created using the proposed system are compared with amateur, state-of-the-art software, and professional mixes prepared by audio engineers. The results obtained prove that mixes created automatically by Wave-U-Net can objectively be evaluated as highly as mixes prepared professionally. This is also confirmed by the statistical analysis of the results of the conducted listening tests. Moreover, the results show a strong correlation between the experience of the listeners in mixing and the likelihood of a higher rating of the Wave-U-Net-based and professional mixes than the amateur ones or the mix prepared using state-of-the-art software. These results are also confirmed by the outcome of the similarity matrix-based analysis.en
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofEURASIP Journal on audio, speech, and music processingen_US
dc.subjectAutomatic music mixingen_US
dc.subjectListening testsen_US
dc.subjectMusic signal parameterizationen_US
dc.subjectSimilarity matrixen_US
dc.subjectWave-U-Net autoencoderen_US
dc.subject.ddc780: Musiken_US
dc.titleAutomatic music signal mixing system based on one-dimensional Wave-U-Net autoencodersen
dc.typeArticleen_US
dc.identifier.scopus2-s2.0-85145646950en
dc.description.versionPeerRevieweden_US
tuhh.container.volume2023en_US
tuhh.oai.showtrueen_US
tuhh.publication.instituteDepartment Medientechniken_US
tuhh.publication.instituteFakultät Design, Medien und Informationen_US
tuhh.publisher.doi10.1186/s13636-022-00266-3-
tuhh.type.opus(wissenschaftlicher) Artikel-
dc.rights.cchttps://creativecommons.org/licenses/by/4.0/en_US
dc.type.casraiJournal Article-
dc.type.diniarticle-
dc.type.driverarticle-
dc.type.statusinfo:eu-repo/semantics/publishedVersionen_US
dcterms.DCMITypeText-
dc.source.typearen
tuhh.container.articlenumber1en
dc.funding.numberundefineden
local.comment.externalarticle number: 1 (2023)en_US
item.creatorGNDKoszewski, Damian-
item.creatorGNDGörne, Thomas-
item.creatorGNDKorvel, Grazina-
item.creatorGNDKostek, Bozena-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.creatorOrcidKoszewski, Damian-
item.creatorOrcidGörne, Thomas-
item.creatorOrcidKorvel, Grazina-
item.creatorOrcidKostek, Bozena-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypeArticle-
crisitem.author.deptDepartment Medientechnik-
crisitem.author.parentorgFakultät Design, Medien und Information-
Enthalten in den Sammlungen:Publications without full text
Zur Kurzanzeige

Seitenansichten

54
checked on 28.11.2024

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons