Verlagslink DOI: | 10.48550/arXiv.2303.00092 | Titel: | A study on the use of perceptual hashing to detect manipulation of embedded messages in images | Sprache: | Englisch | Autorenschaft: | Wöhnert, Sven-Jannik Wöhnert, Kai Hendrik Almamedov, Eldar Frank, Carsten Skwarek, Volker |
Schlagwörter: | Computer Science; Cryptography and Security; Computer Vision and Pattern Recognition | Erscheinungsdatum: | 28-Feb-2023 | Verlag: | Arxiv.org | Zeitschrift oder Schriftenreihe: | De.arxiv.org | Konferenz: | Int'l Conf on Image Processing, Computer Vision, & Pattern Recognition 2022 | Zusammenfassung: | Typically, metadata of images are stored in a specific data segment of the image file. However, to securely detect changes, data can also be embedded within images. This follows the goal to invisibly and robustly embed as much information as possible to, ideally, even survive compression. This work searches for embedding principles which allow to distinguish between unintended changes by lossy image compression and malicious manipulation of the embedded message based on the change of its perceptual or robust hash. Different embedding and compression algorithms are compared. The study shows that embedding a message via integer wavelet transform and compression with Karhunen-Loeve-transform yields the best results. However, it was not possible to distinguish between manipulation and compression in all cases. |
URI: | http://hdl.handle.net/20.500.12738/13979 | Begutachtungsstatus: | Diese Version hat ein Peer-Review-Verfahren durchlaufen (Peer Review) | Einrichtung: | Department Wirtschaftsingenieurwesen Department Umwelttechnik Fakultät Life Sciences |
Dokumenttyp: | Konferenzveröffentlichung | Hinweise zur Quelle: | 12 pages, 3 figures submitted, accepted and presented at IPCV 2022, subconference of CSCE, the publication of the proceedings is delayed, the permission for a (pre-)publication on arxiv was granted (more information here: https://american-cse.org/csce2022/publisher). |
Enthalten in den Sammlungen: | Publications without full text |
Zur Langanzeige
Volltext ergänzen
Feedback zu diesem Datensatz
Export
Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons