Verlagslink DOI: 10.48550/arXiv.2303.00092
Titel: A study on the use of perceptual hashing to detect manipulation of embedded messages in images
Sprache: Englisch
Autorenschaft: Wöhnert, Sven-Jannik 
Wöhnert, Kai Hendrik  
Almamedov, Eldar 
Frank, Carsten  
Skwarek, Volker  
Schlagwörter: Computer Science; Cryptography and Security; Computer Vision and Pattern Recognition
Erscheinungsdatum: 28-Feb-2023
Verlag: Arxiv.org
Zeitschrift oder Schriftenreihe: De.arxiv.org 
Konferenz: Int'l Conf on Image Processing, Computer Vision, & Pattern Recognition 2022 
Zusammenfassung: 
Typically, metadata of images are stored in a specific data segment of the image file. However, to securely detect changes, data can also be embedded within images. This follows the goal to invisibly and robustly embed as much information as possible to, ideally, even survive compression. This work searches for embedding principles which allow to distinguish between unintended changes by lossy image compression and malicious manipulation of the embedded message based on the change of its perceptual or robust hash. Different embedding and compression algorithms are compared. The study shows that embedding a message via integer wavelet transform and compression with Karhunen-Loeve-transform yields the best results. However, it was not possible to distinguish between manipulation and compression in all cases.
URI: http://hdl.handle.net/20.500.12738/13979
Begutachtungsstatus: Diese Version hat ein Peer-Review-Verfahren durchlaufen (Peer Review)
Einrichtung: Department Wirtschaftsingenieurwesen 
Department Umwelttechnik 
Fakultät Life Sciences 
Dokumenttyp: Konferenzveröffentlichung
Hinweise zur Quelle: 12 pages, 3 figures submitted, accepted and presented at IPCV 2022, subconference of CSCE, the publication of the proceedings is delayed, the permission for a (pre-)publication on arxiv was granted (more information here: https://american-cse.org/csce2022/publisher).
Enthalten in den Sammlungen:Publications without full text

Zur Langanzeige

Seitenansichten

102
checked on 28.11.2024

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons