DC Element | Wert | Sprache |
---|---|---|
dc.contributor.author | Hensel, Marc | - |
dc.date.accessioned | 2023-08-30T11:35:21Z | - |
dc.date.available | 2023-08-30T11:35:21Z | - |
dc.date.issued | 2023-07-31 | - |
dc.identifier.uri | http://hdl.handle.net/20.500.12738/14102 | - |
dc.description.abstract | Dealing with artificial intelligence (AI), I was curious how to let computers learn to solve scrambled Rubik's cubes (3x3x3) and Pocket cubes (2x2x2). But wouldn't it be even more fun to demonstrate results by machines that mechanically solve physical cubes? Image to scramble a cube manually, and put it into the machine to unscramble it for you. In this context, I decided to develop a device for the Pocket cube, and I explicitly wanted to design a low-cost device, which is easy to rebuild and use for anyone interested. The design should be based mainly on 3D-printed parts and use two standard servos as motors, only. The device should be controlled by a Laptop, which connects via an Arduino board providing output pins for the servos. Programming applications should be simple by an easy to use Python software interface. The publication documents the device, consisting of the hardware, software for the Arduino board controlling the servo motors, and the Python software interface. A project repository and the 3D print files are available on GitHub and Thingiverse, respectively. | en |
dc.language.iso | en | en_US |
dc.subject | Reinforcement learning | en_US |
dc.subject | Pocket cube | en_US |
dc.subject.ddc | 004: Informatik | en_US |
dc.title | Pocket cube solver : a motorized device for mini cubes | en |
dc.type | Working Paper | en_US |
dc.description.version | NonPeerReviewed | en_US |
tuhh.oai.show | true | en_US |
tuhh.publication.institute | Department Informations- und Elektrotechnik | en_US |
tuhh.publication.institute | Fakultät Technik und Informatik | en_US |
tuhh.publisher.url | https://github.com/MarcOnTheMoon/cubes/blob/main/docs/Hensel_2023_PocketCubeSolver.pdf | - |
tuhh.type.opus | ResearchPaper | - |
dc.rights.cc | https://creativecommons.org/licenses/by-nc-nd/3.0/ | en_US |
dc.type.casrai | Working Paper | - |
dc.type.dini | workingPaper | - |
dc.type.driver | workingPaper | - |
dc.type.status | info:eu-repo/semantics/publishedVersion | en_US |
dcterms.DCMIType | Text | - |
datacite.relation.IsSupplementedBy | https://github.com/MarcOnTheMoon/cubes/blob/main/docs/Lanz_2023_DeepReinforcementLearning.pdf | en_US |
item.creatorGND | Hensel, Marc | - |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_8042 | - |
item.creatorOrcid | Hensel, Marc | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
item.openairetype | Working Paper | - |
crisitem.author.dept | Department Informations- und Elektrotechnik | - |
crisitem.author.orcid | 0009-0005-8888-3761 | - |
crisitem.author.parentorg | Fakultät Technik und Informatik | - |
Enthalten in den Sammlungen: | Publications without full text |
Volltext ergänzen
Feedback zu diesem Datensatz
Export
Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons