DC ElementWertSprache
dc.contributor.authorKinkeldey, Christoph-
dc.contributor.authorMüller-Birn, Claudia-
dc.contributor.authorGülenman, Tom-
dc.contributor.authorBenjamin, Jesse Josua-
dc.contributor.authorHalfaker, Aaron-
dc.date.accessioned2023-08-30T15:00:46Z-
dc.date.available2023-08-30T15:00:46Z-
dc.date.issued2019-07-17-
dc.identifier.urihttp://hdl.handle.net/20.500.12738/14108-
dc.description.abstractMachine learning systems are ubiquitous in various kinds of digital applications and have a huge impact on our everyday life. But a lack of explainability and interpretability of such systems hinders meaningful participation by people, especially by those without a technical background. Interactive visual interfaces (e.g., providing means for manipulating parameters in the user interface) can help tackle this challenge. In this position paper we present PreCall, an interactive visual interface for ORES, a machine learning-based web service for Wikimedia projects such as Wikipedia. While ORES can be used for a number of settings, it can be challenging to translate requirements from the application domain into formal parameter sets needed to configure the ORES models. Assisting Wikipedia editors in finding damaging edits, for example, can be realized at various stages of automatization, which might impact the precision of the applied model. Our prototype PreCall attempts to close this translation gap by interactively visualizing the relationship between major model parameters (recall, precision, false positive rate and the threshold between valuable and damaging edits). Furthermore, PreCall visualizes the probable results for the current parameter set to improve the human’s understanding of the relationship between parameters and outcome when using ORES. We describe PreCall’s components and present a use case that highlights the benefits of our approach. Finally, we pose further research questions we would like to discuss during the workshop.en
dc.language.isoenen_US
dc.publisherCenter for Open Science (OSF)en_US
dc.subjectmachine learningen_US
dc.subjectVisualisierungen_US
dc.subjectWikimediaen_US
dc.subjectExplainabilityen_US
dc.subject.ddc020: Bibliotheks- und Informationswissenschaften_US
dc.titlePreCall : a visual interface for threshold optimization in ML model selectionen
dc.typePreprinten_US
dc.relation.conferenceConference on Human Factors in Computing Systems 2019en_US
dc.description.versionNonPeerRevieweden_US
tuhh.oai.showtrueen_US
tuhh.publication.instituteFreie Universität Berlinen_US
tuhh.publisher.doi10.31219/osf.io/rp76n-
tuhh.type.opusPreprint (Vorabdruck)-
dc.rights.cchttps://creativecommons.org/licenses/by/4.0/en_US
dc.type.casraiOther-
dc.type.dinipreprint-
dc.type.driverpreprint-
dc.type.statusinfo:eu-repo/semantics/acceptedVersionen_US
dcterms.DCMITypeText-
item.creatorGNDKinkeldey, Christoph-
item.creatorGNDMüller-Birn, Claudia-
item.creatorGNDGülenman, Tom-
item.creatorGNDBenjamin, Jesse Josua-
item.creatorGNDHalfaker, Aaron-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_816b-
item.creatorOrcidKinkeldey, Christoph-
item.creatorOrcidMüller-Birn, Claudia-
item.creatorOrcidGülenman, Tom-
item.creatorOrcidBenjamin, Jesse Josua-
item.creatorOrcidHalfaker, Aaron-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypePreprint-
crisitem.author.deptDepartment Information und Medienkommunikation-
crisitem.author.orcid0000-0001-5669-6295-
crisitem.author.parentorgFakultät Design, Medien und Information-
Enthalten in den Sammlungen:Publications without full text
Zur Kurzanzeige

Seitenansichten

69
checked on 28.11.2024

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons