Publisher DOI: 10.31219/osf.io/rp76n
Title: PreCall : a visual interface for threshold optimization in ML model selection
Language: English
Authors: Kinkeldey, Christoph  
Müller-Birn, Claudia 
Gülenman, Tom 
Benjamin, Jesse Josua 
Halfaker, Aaron 
Keywords: machine learning; Visualisierung; Wikimedia; Explainability
Issue Date: 17-Jul-2019
Publisher: Center for Open Science (OSF)
Conference: Conference on Human Factors in Computing Systems 2019 
Abstract: 
Machine learning systems are ubiquitous in various kinds of digital applications and have a huge impact on our everyday life. But a lack of explainability and interpretability of such systems hinders meaningful participation by people, especially by those without a technical background. Interactive visual interfaces (e.g., providing means for manipulating parameters in the user interface) can help tackle this challenge. In this position paper we present PreCall, an interactive visual interface for ORES, a machine learning-based web service for Wikimedia projects such as Wikipedia. While ORES can be used for a number of settings, it can be challenging to translate requirements from the application domain into formal parameter sets needed to configure the ORES models. Assisting Wikipedia editors in finding damaging edits, for example, can be realized at various stages of automatization, which might impact the precision of the applied model. Our prototype PreCall attempts to close this translation gap by interactively visualizing the relationship between major model parameters (recall, precision, false positive rate and the threshold between valuable and damaging edits). Furthermore, PreCall visualizes the probable results for the current parameter set to improve the human’s understanding of the relationship between parameters and outcome when using ORES. We describe PreCall’s components and present a use case that highlights the benefits of our approach. Finally, we pose further research questions we would like to discuss during the workshop.
URI: http://hdl.handle.net/20.500.12738/14108
Review status: Currently there is no review planned for this version
Institute: Freie Universität Berlin 
Type: Preprint
Appears in Collections:Publications without full text

Show full item record

Page view(s)

69
checked on Nov 28, 2024

Google ScholarTM

Check

HAW Katalog

Check

Add Files to Item

Note about this record


This item is licensed under a Creative Commons License Creative Commons