Fulltext available Open Access
Title: Vorhersage eines Taxifahrpreises in New York City mit maschinellen Lernverfahren
Language: German
Authors: Cao, Thu-Bao 
Keywords: Machine Learning; KDD; Logistic Regression; Random Forest; Yellow Taxi Dataset; Imbalance Dataset
Issue Date: 27-Sep-2023
Abstract: 
In dieser Studie werden die Probleme und Methoden zur Steigerung der Datenqualität eines Realdatensatzes New York City Yellow Cab aufgezeigt. Es wird diskutiert, welcheexternen Daten und neuen Features durch das Feature Engineering für die Vorhersage des Taxifahrpreises in New York City relevant sind. Schließlich werden verschiedene Machine-Learning-Algorithmen und Versionen des Trainingdatensatzes getestet, um deren Auswirkungen auf die Vorhersageleistung gegeneinander zu evaluieren.

This study shows the problems and methods for increasing the data quality of a real data set New York City Yellow Cab. It is discussed which external data and new features through feature engineering are relevant for predicting the taxi fare in New York City. Finally, different machine learning algorithms and different versions of the training data set are tested in order to evaluate their effects on the prediction performance against each other.
URI: http://hdl.handle.net/20.500.12738/14207
Institute: Department Informatik 
Fakultät Technik und Informatik 
Type: Thesis
Thesis type: Bachelor Thesis
Advisor: von Luck, Kai 
Referee: Tiedemann, Tim 
Appears in Collections:Theses

Files in This Item:
File Description SizeFormat
Bachelorarbeit_Cao_Thu-Bao_geschwärzt.pdf4.65 MBAdobe PDFView/Open
Show full item record

Page view(s)

138
checked on Nov 27, 2024

Download(s)

99
checked on Nov 27, 2024

Google ScholarTM

Check

HAW Katalog

Check

Note about this record


Items in REPOSIT are protected by copyright, with all rights reserved, unless otherwise indicated.