Verlagslink DOI: 10.1145/3594806.3594861
Titel: Facial emotion recognition in immersive virtual reality : a systematic literature review
Sprache: Englisch
Autorenschaft: Ortmann, Thorben  
Wang, Qi 
Putzar, Larissa 
Schlagwörter: affective computing; emotion recognition; facial expressions; head-mounted display; review; virtual reality
Erscheinungsdatum: 10-Aug-2023
Verlag: Association for Computing Machinery
Teil der Schriftenreihe: Proceedings of the 16th ACM International Conference on PErvasive Technologies Related to Assistive Environments (PETRA 2023) 
Anfangsseite: 77
Endseite: 82
Konferenz: International Conference on PErvasive Technologies Related to Assistive Environments 2023 
Zusammenfassung: 
With the broader adoption of virtual reality (VR), objective physiological measurements to automatically assess a user's emotional state are gaining importance. Emotions affect human behavior, perception, cognition, and decision-making. Their recognition allows analysis of VR experiences and enables systems to react to and interact with a user's emotions. Facial expressions are one of the most potent and natural signals to recognize emotions. Automatic facial expression recognition (FER) typically relies on facial images. However, users wear head-mounted displays (HMDs) in immersive VR environments, which occlude almost the entire upper half of the face. That severely limits the capabilities of conventional FER methods. We address this emerging challenge with our systematic literature review. To our knowledge, it is the first review on FER in immersive VR scenarios where HMDs partially occlude a user's face. We identified 256 related works and included 21 for detailed analysis. Our review provides a comprehensive overview of the state-of-the-art and draws conclusions for future research.
URI: http://hdl.handle.net/20.500.12738/14279
ISBN: 979-8-4007-0069-9
Begutachtungsstatus: Diese Version hat ein Peer-Review-Verfahren durchlaufen (Peer Review)
Einrichtung: Department Medientechnik 
Fakultät Design, Medien und Information 
Dokumenttyp: Konferenzveröffentlichung
Enthalten in den Sammlungen:Publications without full text

Zur Langanzeige

Seitenansichten

127
checked on 27.11.2024

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.