DC ElementWertSprache
dc.contributor.authorUrizarna-Carasa, Julio-
dc.contributor.authorRuprecht, Daniel-
dc.contributor.authorvon Kameke, Alexandra-
dc.contributor.authorPadberg-Gehle, Kathrin-
dc.date.accessioned2023-11-03T12:18:35Z-
dc.date.available2023-11-03T12:18:35Z-
dc.date.issued2023-03-24-
dc.identifier.issn1617-7061en_US
dc.identifier.urihttp://hdl.handle.net/20.500.12738/14315-
dc.description.abstractThe Maxey-Riley equation (MRE) models the motion of a finite-sized, spherical particle in a fluid. It is a second-order integro-differential equation with a kernel with a singularity at initial time. Because solving the integral term is numerically challenging, it is often neglected despite its often non-negligible impact. Recently, Prasath et al. showed that the MRE can be rewritten as a time-dependent heat equation on a semi-infinite domain with a nonlinear, Robin-type boundary condition. This approach avoids the need to deal with the integral term. They also describe a numerical approach for solving the transformed MRE based on Fokas method. We provide a Python toolbox implementing their approach, verify it against some of their numerical examples and demonstrate its flexibility by computing the trajectory of a particle in a velocity field given by experimental data.en
dc.language.isoenen_US
dc.publisherWiley-VCHen_US
dc.relation.ispartofProceedings in applied mathematics and mechanicsen_US
dc.subject.ddc004: Informatiken_US
dc.titleA Python toolbox for the numerical solution of the Maxey‐Riley equationen
dc.typeArticleen_US
dc.description.versionPeerRevieweden_US
local.contributorPerson.editorBöhm, Christoph-
local.contributorPerson.editorMang, Katrin-
local.contributorPerson.editorMarkert, Bernd-
local.contributorPerson.editorReese, Stefanie-
local.contributorPerson.editorSchmidtchen, Markus-
local.contributorPerson.editorWaimann, Johanna-
local.contributorPerson.editorKaliske, Michael-
tuhh.container.issue1en_US
tuhh.container.volume22en_US
tuhh.oai.showtrueen_US
tuhh.publication.instituteFakultät Technik und Informatiken_US
tuhh.publication.instituteDepartment Maschinenbau und Produktionen_US
tuhh.publication.instituteHeinrich-Blasius-Institut für Physikalische Technologienen_US
tuhh.publisher.doi10.1002/pamm.202200242-
tuhh.type.opus(wissenschaftlicher) Artikel-
dc.rights.cchttps://creativecommons.org/licenses/by-nc/4.0/en_US
dc.type.casraiJournal Article-
dc.type.diniarticle-
dc.type.driverarticle-
dc.type.statusinfo:eu-repo/semantics/publishedVersionen_US
dcterms.DCMITypeText-
local.comment.externalarticle number: e202200242. Special Issue: 92nd Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM).en_US
item.creatorGNDUrizarna-Carasa, Julio-
item.creatorGNDRuprecht, Daniel-
item.creatorGNDvon Kameke, Alexandra-
item.creatorGNDPadberg-Gehle, Kathrin-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.creatorOrcidUrizarna-Carasa, Julio-
item.creatorOrcidRuprecht, Daniel-
item.creatorOrcidvon Kameke, Alexandra-
item.creatorOrcidPadberg-Gehle, Kathrin-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypeArticle-
crisitem.author.deptDepartment Maschinenbau und Produktion-
crisitem.author.orcid0000-0002-1913-774X-
crisitem.author.parentorgFakultät Technik und Informatik-
Enthalten in den Sammlungen:Publications without full text
Zur Kurzanzeige

Seitenansichten

124
checked on 27.11.2024

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons