DC Element | Wert | Sprache |
---|---|---|
dc.contributor.author | Urizarna-Carasa, Julio | - |
dc.contributor.author | Ruprecht, Daniel | - |
dc.contributor.author | von Kameke, Alexandra | - |
dc.contributor.author | Padberg-Gehle, Kathrin | - |
dc.date.accessioned | 2023-11-03T12:18:35Z | - |
dc.date.available | 2023-11-03T12:18:35Z | - |
dc.date.issued | 2023-03-24 | - |
dc.identifier.issn | 1617-7061 | en_US |
dc.identifier.uri | http://hdl.handle.net/20.500.12738/14315 | - |
dc.description.abstract | The Maxey-Riley equation (MRE) models the motion of a finite-sized, spherical particle in a fluid. It is a second-order integro-differential equation with a kernel with a singularity at initial time. Because solving the integral term is numerically challenging, it is often neglected despite its often non-negligible impact. Recently, Prasath et al. showed that the MRE can be rewritten as a time-dependent heat equation on a semi-infinite domain with a nonlinear, Robin-type boundary condition. This approach avoids the need to deal with the integral term. They also describe a numerical approach for solving the transformed MRE based on Fokas method. We provide a Python toolbox implementing their approach, verify it against some of their numerical examples and demonstrate its flexibility by computing the trajectory of a particle in a velocity field given by experimental data. | en |
dc.language.iso | en | en_US |
dc.publisher | Wiley-VCH | en_US |
dc.relation.ispartof | Proceedings in applied mathematics and mechanics | en_US |
dc.subject.ddc | 004: Informatik | en_US |
dc.title | A Python toolbox for the numerical solution of the Maxey‐Riley equation | en |
dc.type | Article | en_US |
dc.description.version | PeerReviewed | en_US |
local.contributorPerson.editor | Böhm, Christoph | - |
local.contributorPerson.editor | Mang, Katrin | - |
local.contributorPerson.editor | Markert, Bernd | - |
local.contributorPerson.editor | Reese, Stefanie | - |
local.contributorPerson.editor | Schmidtchen, Markus | - |
local.contributorPerson.editor | Waimann, Johanna | - |
local.contributorPerson.editor | Kaliske, Michael | - |
tuhh.container.issue | 1 | en_US |
tuhh.container.volume | 22 | en_US |
tuhh.oai.show | true | en_US |
tuhh.publication.institute | Fakultät Technik und Informatik | en_US |
tuhh.publication.institute | Department Maschinenbau und Produktion | en_US |
tuhh.publication.institute | Heinrich-Blasius-Institut für Physikalische Technologien | en_US |
tuhh.publisher.doi | 10.1002/pamm.202200242 | - |
tuhh.type.opus | (wissenschaftlicher) Artikel | - |
dc.rights.cc | https://creativecommons.org/licenses/by-nc/4.0/ | en_US |
dc.type.casrai | Journal Article | - |
dc.type.dini | article | - |
dc.type.driver | article | - |
dc.type.status | info:eu-repo/semantics/publishedVersion | en_US |
dcterms.DCMIType | Text | - |
local.comment.external | article number: e202200242. Special Issue: 92nd Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM). | en_US |
item.creatorGND | Urizarna-Carasa, Julio | - |
item.creatorGND | Ruprecht, Daniel | - |
item.creatorGND | von Kameke, Alexandra | - |
item.creatorGND | Padberg-Gehle, Kathrin | - |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_6501 | - |
item.creatorOrcid | Urizarna-Carasa, Julio | - |
item.creatorOrcid | Ruprecht, Daniel | - |
item.creatorOrcid | von Kameke, Alexandra | - |
item.creatorOrcid | Padberg-Gehle, Kathrin | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
item.openairetype | Article | - |
crisitem.author.dept | Department Maschinenbau und Produktion | - |
crisitem.author.orcid | 0000-0002-1913-774X | - |
crisitem.author.parentorg | Fakultät Technik und Informatik | - |
Enthalten in den Sammlungen: | Publications without full text |
Volltext ergänzen
Feedback zu diesem Datensatz
Export
Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons