DC FieldValueLanguage
dc.contributor.authorUrizarna-Carasa, Julio-
dc.contributor.authorRuprecht, Daniel-
dc.contributor.authorvon Kameke, Alexandra-
dc.contributor.authorPadberg-Gehle, Kathrin-
dc.date.accessioned2023-11-03T12:18:35Z-
dc.date.available2023-11-03T12:18:35Z-
dc.date.issued2023-03-24-
dc.identifier.issn1617-7061en_US
dc.identifier.urihttp://hdl.handle.net/20.500.12738/14315-
dc.description.abstractThe Maxey-Riley equation (MRE) models the motion of a finite-sized, spherical particle in a fluid. It is a second-order integro-differential equation with a kernel with a singularity at initial time. Because solving the integral term is numerically challenging, it is often neglected despite its often non-negligible impact. Recently, Prasath et al. showed that the MRE can be rewritten as a time-dependent heat equation on a semi-infinite domain with a nonlinear, Robin-type boundary condition. This approach avoids the need to deal with the integral term. They also describe a numerical approach for solving the transformed MRE based on Fokas method. We provide a Python toolbox implementing their approach, verify it against some of their numerical examples and demonstrate its flexibility by computing the trajectory of a particle in a velocity field given by experimental data.en
dc.language.isoenen_US
dc.publisherWiley-VCHen_US
dc.relation.ispartofProceedings in applied mathematics and mechanicsen_US
dc.subject.ddc004: Informatiken_US
dc.titleA Python toolbox for the numerical solution of the Maxey‐Riley equationen
dc.typeArticleen_US
dc.description.versionPeerRevieweden_US
local.contributorPerson.editorBöhm, Christoph-
local.contributorPerson.editorMang, Katrin-
local.contributorPerson.editorMarkert, Bernd-
local.contributorPerson.editorReese, Stefanie-
local.contributorPerson.editorSchmidtchen, Markus-
local.contributorPerson.editorWaimann, Johanna-
local.contributorPerson.editorKaliske, Michael-
tuhh.container.issue1en_US
tuhh.container.volume22en_US
tuhh.oai.showtrueen_US
tuhh.publication.instituteFakultät Technik und Informatiken_US
tuhh.publication.instituteDepartment Maschinenbau und Produktionen_US
tuhh.publication.instituteHeinrich-Blasius-Institut für Physikalische Technologienen_US
tuhh.publisher.doi10.1002/pamm.202200242-
tuhh.type.opus(wissenschaftlicher) Artikel-
dc.rights.cchttps://creativecommons.org/licenses/by-nc/4.0/en_US
dc.type.casraiJournal Article-
dc.type.diniarticle-
dc.type.driverarticle-
dc.type.statusinfo:eu-repo/semantics/publishedVersionen_US
dcterms.DCMITypeText-
local.comment.externalarticle number: e202200242. Special Issue: 92nd Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM).en_US
item.creatorGNDUrizarna-Carasa, Julio-
item.creatorGNDRuprecht, Daniel-
item.creatorGNDvon Kameke, Alexandra-
item.creatorGNDPadberg-Gehle, Kathrin-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.creatorOrcidUrizarna-Carasa, Julio-
item.creatorOrcidRuprecht, Daniel-
item.creatorOrcidvon Kameke, Alexandra-
item.creatorOrcidPadberg-Gehle, Kathrin-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypeArticle-
crisitem.author.deptDepartment Maschinenbau und Produktion-
crisitem.author.orcid0000-0002-1913-774X-
crisitem.author.parentorgFakultät Technik und Informatik-
Appears in Collections:Publications without full text
Show simple item record

Page view(s)

124
checked on Nov 27, 2024

Google ScholarTM

Check

HAW Katalog

Check

Add Files to Item

Note about this record


This item is licensed under a Creative Commons License Creative Commons