Verlagslink: https://www.scitepress.org/Papers/2023/122357/122357.pdf
Verlagslink DOI: 10.5220/0012235700003543
Titel: Offline feature-based reinforcement learning with preprocessed image inputs for liquid pouring control
Sprache: Englisch
Autorenschaft: Pareigis, Stephan  
Hermosilla-Diaz, Jesus Eduardo 
Reyes-Montiel, Jeeangh 
Maaß, Fynn 
Haase, Helen 
Mang, Maximilian 
Marin-Hernandez, Antonio 
Herausgeber*In: Gini, Giuseppina 
Nijmeijer, Henk 
Filev, Dimitar 
Schlagwörter: Offline Reinforcement Learning; Pouring Liquid; Artificial Neural Network; Robust Control; UR5 Robot Manipulator
Erscheinungsdatum: 14-Nov-2023
Verlag: ScitePress
Teil der Schriftenreihe: Proceedings of the 20th International Conference on Informatics in Control, Automation and Robotics 
Bandangabe: 1
Anfangsseite: 320
Endseite: 326
Konferenz: International Conference on Informatics in Control, Automation and Robotics 2023 
Zusammenfassung: 
A method for the creation of a liquid pouring controller is proposed, based on experimental data gathered from a small number of experiments. In a laboratory configuration, a UR5 robot arm equipped with a camera near the end effector holds a container. The camera captures the liquid pouring from the container as the robot adjusts its turning angles to achieve a specific pouring target volume. The proposed controller applies image analysis in a preprocessing stage to determine the liquid volume pouring from the container at each frame. This calculated volume, in conjunction with an estimated target volume in the receiving container, serves as input for a policy that computes the necessary turning angles for precise liquid pouring. The data received on the physical system is used as Monte-Carlo episodes for training an artificial neural network using a policy gradient method. Experiments with the proposed method are conducted using a simple simulation. Convergence proves to be fast and the achieved policy is independent of initial and goal volumes.
URI: http://hdl.handle.net/20.500.12738/14401
ISBN: 978-989-758-670-5
ISSN: 2184-2809
Begutachtungsstatus: Diese Version hat ein Peer-Review-Verfahren durchlaufen (Peer Review)
Einrichtung: Department Informatik 
Fakultät Technik und Informatik 
Dokumenttyp: Konferenzveröffentlichung
Enthalten in den Sammlungen:Publications without full text

Zur Langanzeige

Seitenansichten

179
checked on 27.11.2024

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons