DC ElementWertSprache
dc.contributor.authorSchnelle, Leona-
dc.contributor.authorHeinrich, Johannes-
dc.contributor.authorSchneidewind, Joel-
dc.contributor.authorJacob, Dirk-
dc.contributor.authorLichtenberg, Gerwald-
dc.date.accessioned2023-11-29T09:10:01Z-
dc.date.available2023-11-29T09:10:01Z-
dc.date.issued2023-11-22-
dc.identifier.issn2405-8963en_US
dc.identifier.urihttp://hdl.handle.net/20.500.12738/14411-
dc.description.abstractThe paper proposes a low-rank structured parameter identification method for multilinear models. Multilinear models extend the class of linear time-invariant models and can depict more complex dynamics. Tensor representations of these models keep the dimensionality but provide very efficient storage and computation methods of the models by applying decomposition and normalization procedures. The proposed parameter identification method is an automated grey box approach, where no manual modeling is required. A pre-structuring process reduces the parameter identification problem and converts it to a sparse representation to make it applicable to large scale applications while preserving the interpretability of the parameters as property of the normalized multilinear models. An application example for anomaly detection of building systems is given with simulation data for the HVAC system of a seminar room.en
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofIFAC-PapersOnLineen_US
dc.subjectMultilinear modelsen_US
dc.subjecttensor decompositionen_US
dc.subjectparameter identificationen_US
dc.subjectbuilding systemsen_US
dc.subjectanomaly detectionen_US
dc.subject.ddc530: Physiken_US
dc.titleUsing structured low-rank tensors for multilinear modeling of building systemsen
dc.typeinProceedingsen_US
dc.relation.conferenceInternational Federation of Automatic Control World Congress 2023en_US
dc.description.versionPeerRevieweden_US
local.contributorPerson.editorIshii, Hideaki-
local.contributorPerson.editorEbihara, Yoshio-
local.contributorPerson.editorImura, Jun-ichi-
local.contributorPerson.editorYamakita, Masaki-
tuhh.container.endpage7311en_US
tuhh.container.issue2en_US
tuhh.container.startpage7306en_US
tuhh.container.volume56en_US
tuhh.oai.showtrueen_US
tuhh.publication.instituteDepartment Medizintechniken_US
tuhh.publication.instituteFakultät Life Sciencesen_US
tuhh.publisher.doi10.1016/j.ifacol.2023.10.343-
tuhh.type.opusInProceedings (Aufsatz / Paper einer Konferenz etc.)-
dc.rights.cchttps://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.type.casraiConference Paper-
dc.type.dinicontributionToPeriodical-
dc.type.drivercontributionToPeriodical-
dc.type.statusinfo:eu-repo/semantics/publishedVersionen_US
dcterms.DCMITypeText-
tuhh.book.title22nd IFAC World Congress: Yokohama, Japan, July 9-14, 2023 : International Federation of Automatic Control World Congress ; proceedings-
item.creatorGNDSchnelle, Leona-
item.creatorGNDHeinrich, Johannes-
item.creatorGNDSchneidewind, Joel-
item.creatorGNDJacob, Dirk-
item.creatorGNDLichtenberg, Gerwald-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.creatorOrcidSchnelle, Leona-
item.creatorOrcidHeinrich, Johannes-
item.creatorOrcidSchneidewind, Joel-
item.creatorOrcidJacob, Dirk-
item.creatorOrcidLichtenberg, Gerwald-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypeinProceedings-
crisitem.author.deptDepartment Medizintechnik-
crisitem.author.deptDepartment Medizintechnik-
crisitem.author.orcid0000-0001-6032-0733-
crisitem.author.parentorgFakultät Life Sciences-
crisitem.author.parentorgFakultät Life Sciences-
Enthalten in den Sammlungen:Publications without full text
Zur Kurzanzeige

Seitenansichten

184
checked on 27.11.2024

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons