DC ElementWertSprache
dc.contributor.authorWöhnert, Kai Hendrik-
dc.date.accessioned2023-12-13T14:10:28Z-
dc.date.available2023-12-13T14:10:28Z-
dc.date.issued2023-09-20-
dc.identifier.urihttp://hdl.handle.net/20.500.12738/14480-
dc.description.abstractIn an increasingly complex cyber threat landscape, traditional malware detection methods often fall short, particularly within resource-limited distributed networks like smart grids. This research project aims to develop an efficient malware detection system for such distributed networks, focusing on three elements: feature extraction, feature selection, and classification. For classification, a lightweight and accurate machine-learning model needs to be developed.en
dc.language.isoenen_US
dc.publisherGesellschaft für Informatik e. V.en_US
dc.subjectmachine learningen_US
dc.subjectmalware classificationen_US
dc.subjectintrusion detectionen_US
dc.subject.ddc004: Informatiken_US
dc.titleLightweight federated learning based detection of malicious activity in distributed networksen
dc.typeinProceedingsen_US
dc.relation.conferenceGerman conference on Artificial Intelligence 2023en_US
dc.description.versionPeerRevieweden_US
local.contributorPerson.editorStolzenburg, Frieder-
tuhh.container.endpage112en_US
tuhh.container.startpage103en_US
tuhh.oai.showtrueen_US
tuhh.publication.instituteDepartment Wirtschaftsingenieurwesenen_US
tuhh.publication.instituteFakultät Life Sciencesen_US
tuhh.publication.instituteForschungs- und Transferzentrum CyberSecen_US
tuhh.publisher.doi10.18420/ki2023-dc-12-
tuhh.relation.ispartofseriesDC@KI2023: Proceedings of Doctoral Consortium at KI 2023en_US
tuhh.type.opusInProceedings (Aufsatz / Paper einer Konferenz etc.)-
dc.rights.cchttps://creativecommons.org/licenses/by-sa/4.0/en_US
dc.type.casraiConference Paper-
dc.type.dinicontributionToPeriodical-
dc.type.drivercontributionToPeriodical-
dc.type.statusinfo:eu-repo/semantics/publishedVersionen_US
dcterms.DCMITypeText-
item.seriesrefDC@KI2023: Proceedings of Doctoral Consortium at KI 2023-
item.tuhhseriesidDC@KI2023: Proceedings of Doctoral Consortium at KI 2023-
item.creatorGNDWöhnert, Kai Hendrik-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.creatorOrcidWöhnert, Kai Hendrik-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypeinProceedings-
crisitem.author.deptDepartment Wirtschaftsingenieurwesen-
crisitem.author.orcid0000-0002-1346-8126-
crisitem.author.parentorgFakultät Life Sciences-
Enthalten in den Sammlungen:Publications without full text
Zur Kurzanzeige

Seitenansichten

229
checked on 27.11.2024

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons