DC ElementWertSprache
dc.contributor.authorBlum, Fridolin-
dc.contributor.authorWieczorek, Nils-
dc.contributor.authorStelldinger, Peer-
dc.date.accessioned2024-01-16T14:38:36Z-
dc.date.available2024-01-16T14:38:36Z-
dc.date.issued2023-12-15-
dc.identifier.isbn978-3-88579-736-4en_US
dc.identifier.issn1617-5468en_US
dc.identifier.urihttp://hdl.handle.net/20.500.12738/14567-
dc.description.abstractBattery recycling requires efficient sorting based on chemical composition. Traditional methods like X-Ray or Electromagnetic Sensors lack automation, with X-Ray sorting 26 batteries and electromagnetic sorting only 6 batteries per second. We propose using deep learning image classification to detect battery manufacturer and product series. Our prototype includes a conveyor belt, webcam, ring light, and Nvidia Jetson AGX Orin. With a dataset of 9 battery series, we achieved over 99% validation accuracy using a pretrained MobileNetV2 model. The model can classify 50 images per second with limited hardware. This approach offers potential for automated sorting, significantly improving recycling throughput and efficiency. Further research should expand the dataset and explore applicability to other battery types, optimizing the model and hardware configuration.en
dc.language.isoenen_US
dc.publisherKöllen Druck + Verlagen_US
dc.relation.ispartofGI-Editionen_US
dc.subjectBattery Recyclingen_US
dc.subjectDeep Learningen_US
dc.subjectImage Classificationen_US
dc.subject.ddc620: Ingenieurwissenschaftenen_US
dc.titleProof of concept for a new battery sorting method based on deep learning image classificationen
dc.title.alternativeProof of Concept für eine neue Batteriesortiermethode auf der Grundlage von Deep Learning-Bildklassifizierungde
dc.typeinProceedingsen_US
dc.relation.conferenceEnviroInfo 2023en_US
dc.description.versionPeerRevieweden_US
local.contributorCorporate.editorGesellschaft für Informatik e.V.-
local.contributorPerson.editorWohlgemuth, Volker-
local.contributorPerson.editorKranzlmüller, Dieter-
local.contributorPerson.editorHöb, Maximilian-
tuhh.container.endpage44en_US
tuhh.container.startpage35en_US
tuhh.container.volume342en_US
tuhh.oai.showtrueen_US
tuhh.publication.instituteForschungs- und Transferzentrum Smart Systemsen_US
tuhh.publication.instituteDepartment Informatiken_US
tuhh.publication.instituteFakultät Technik und Informatiken_US
tuhh.publisher.doi10.18420/env2023-003-
tuhh.relation.ispartofseriesEnviroInfo 2023 : 11.-13. Oktober 2023 in Garching, Germany ; Short-/Work in Progress-Papersen_US
tuhh.type.opusInProceedings (Aufsatz / Paper einer Konferenz etc.)-
dc.rights.cchttps://creativecommons.org/licenses/by-sa/4.0/en_US
dc.type.casraiConference Paper-
dc.type.dinicontributionToPeriodical-
dc.type.drivercontributionToPeriodical-
dc.type.statusinfo:eu-repo/semantics/publishedVersionen_US
dcterms.DCMITypeText-
item.seriesrefEnviroInfo 2023 : 11.-13. Oktober 2023 in Garching, Germany ; Short-/Work in Progress-Papers-
item.tuhhseriesidEnviroInfo 2023 : 11.-13. Oktober 2023 in Garching, Germany ; Short-/Work in Progress-Papers-
item.creatorGNDBlum, Fridolin-
item.creatorGNDWieczorek, Nils-
item.creatorGNDStelldinger, Peer-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.creatorOrcidBlum, Fridolin-
item.creatorOrcidWieczorek, Nils-
item.creatorOrcidStelldinger, Peer-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypeinProceedings-
crisitem.author.deptDepartment Informatik-
crisitem.author.orcid0000-0001-8079-2797-
crisitem.author.parentorgFakultät Technik und Informatik-
Enthalten in den Sammlungen:Publications without full text
Zur Kurzanzeige

Seitenansichten

61
checked on 27.11.2024

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons