Publisher DOI: 10.1002/pld3.420
Title: The long road of functional recruitment : the evolution of a gene duplicate to pyrrolizidine alkaloid biosynthesis in the morning glories (Convolvulaceae)
Language: English
Authors: Prakashrao, Arunraj Saranya 
Beuerle, Till 
Simões, Ana Rita G. 
Hopf, Christina 
Çiçek, Serhat Sezai 
Stegemann, Thomas 
Ober, Dietrich 
Kaltenegger, Elisabeth 
Keywords: deoxyhypusine synthase; Distimake; gene duplication; homospermidine synthase; Ipomoea; molecular evolution; pyrrolizidine alkaloids
Issue Date: 19-Jul-2022
Publisher: Wiley
Journal or Series Name: Plant direct 
Volume: 6
Issue: 7
Abstract: 
In plants, homospermidine synthase (HSS) is a pathway-specific enzyme initiating the biosynthesis of pyrrolizidine alkaloids (PAs), which function as a chemical defense against herbivores. In PA-producing Convolvulaceae (“morning glories”), HSS originated from deoxyhypusine synthase at least >50 to 75 million years ago via a gene duplication event and subsequent functional diversification. To study the recruitment of this ancient gene duplicate to PA biosynthesis, the presence of putative hss gene copies in 11 Convolvulaceae species was analyzed. Additionally, various plant parts from seven of these species were screened for the presence of PAs. Although all of these species possess a putative hss copy, PAs could only be detected in roots of Ipomoea neei (Spreng.) O'Donell and Distimake quinquefolius (L.) A.R.Simões & Staples in this study. A precursor of PAs was detected in roots of Ipomoea alba L. Thus, despite sharing high sequence identities, the presence of an hss gene copy does not correlate with PA accumulation in particular species of Convolvulaceae. In vitro activity assays of the encoded enzymes revealed a broad spectrum of enzyme activity, further emphasizing a functional diversity of the hss gene copies. A recently identified HSS specific amino acid motif seems to be important for the loss of the ancestral protein function—the activation of the eukaryotic initiation factor 5A (eIF5A). Thus, the motif might be indicative for a change of function but allows not to predict the new function. This emphasizes the challenges in annotating functions for duplicates, even for duplicates from closely related species.
URI: http://hdl.handle.net/20.500.12738/14594
ISSN: 2475-4455
Review status: This version was peer reviewed (peer review)
Institute: Christian-Albrechts-Universität zu Kiel 
Type: Article
Appears in Collections:Publications without full text

Show full item record

Page view(s)

14
checked on Jul 6, 2024

Google ScholarTM

Check

HAW Katalog

Check

Add Files to Item

Note about this record


This item is licensed under a Creative Commons License Creative Commons