Volltextdatei(en) in REPOSIT vorhanden Open Access
Titel: Zeitreihenvorhersage mit Neuronalen Netzen
Sprache: Deutsch
Autorenschaft: Rawald, Tobias 
Schlagwörter: Zeitreihenvorhersage; Neuronale Netze; FFNN; LSTM; Autoencoder; CNN; Energieprognose; Time Series Forecasting; Neural Networks; Energy Prediction
Erscheinungsdatum: 24-Jan-2024
Zusammenfassung: 
In dieser Arbeit wird untersucht, inwiefern Zeitreihen mithilfe von neuronalen Netzen vorhergesagt werden können. Dafür werden die Netz-Architekturen FFNN, LSTM, Autoencoder und CNN verwendet. Die Versuchsdurchführung ist so konzipiert, dass ein Vergleich zwischen den Architekturen anhand von drei Experimenten umgesetzt wird, welche sich in ihrer Komplexität unterscheiden. In den ersten beiden Versuchen werden Modelle darauf trainiert, eine Zahlenreihe und die Sinuskurve fortzuführen, wobei das LSTMModell und der Autoencoder die niedrigsten Abweichungen zu den Testdaten aufweisen. Der dritte Versuch basiert auf öffentlichen Energiedaten von Deutschland. Anhand von stündlichen und täglichen Solarprognosen wird festgestellt, dass LSTM-CNN-Modelle die größtenteils besten Ergebnisse erzielen. In der Vorhersage von Solardaten ist ein Trend zur steigenden Energieerzeugung durch Solarstrom zu erkennen.

This study analyses whether time series can be predicted by using the neural network architectures FFNN, LSTM, Autoencoder and CNN. The comparison was accomplished by three experiments using different levels of complexity. In the first two experiments, models are trained to continue a series of numbers and the sine curve, with the LSTM model and the Autoencoder archieving the lowest deviations from the test data. The third experiment is based on public energy data from Germany. Using hourly and daily solar forecasts, LSTM-CNN models achieve mostly the best results. It was possible to determine a trend towards an increased energy production by solar power in the future.
URI: http://hdl.handle.net/20.500.12738/14595
Einrichtung: Department Medientechnik 
Fakultät Design, Medien und Information 
Dokumenttyp: Abschlussarbeit
Abschlussarbeitentyp: Bachelorarbeit
Hauptgutachter*in: Putzar, Larissa 
Gutachter*in der Arbeit: Schumann, Sabine 
Enthalten in den Sammlungen:Theses

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat
Bachelorarbeit_TobiasRawald_geschwärzt.pdf1.48 MBAdobe PDFÖffnen/Anzeigen
Zur Langanzeige

Seitenansichten

136
checked on 26.11.2024

Download(s)

508
checked on 26.11.2024

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Feedback zu diesem Datensatz


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.