Publisher DOI: 10.1016/j.ijhydene.2023.08.084
Title: Tubular PEM electrolysis cells with a 3D-printed oxygen electrode and ALD catalyst coating
Language: English
Authors: Laube, Armin 
Sánchez Batalla, Beatriz 
Weidlich, Claudia 
Hofer, André 
Bachmann, Julien 
Zallmann, Sebastian 
Körner, Carolin 
Fischer, Simon 
Chica, Antonio 
Struckmann, Thorsten  
Keywords: Additive manufacturing; Cylindrical cell design; PEM water electrolysis
Issue Date: 2-Jan-2024
Publisher: Elsevier
Journal or Series Name: International journal of hydrogen energy 
Volume: 49
Issue: Part C
Startpage: 437
Endpage: 448
Project: Tubulyze: Auslegungsgrundlagen einer tubulären, mittels additiver Methoden und Extrusion gefertigten Elektrolysezelle, Teilvorhaben: Zellentwicklung, Systemintegration und Charakterisierung 
Abstract: 
Polymer electrolyte membrane electrolysis (PEMEL) is a technology with a major role in linking the hydrogen production to renewable energy resources with a volatile behaviour such as wind and solar. High amounts of precious metals and a labour intensive production also make it a cost intensive technology. A tubular cell design has the potential to reduce production costs by co-extrusion of cells which feature a reduced sealing length. For the inner half cell, additive manufacturing (AM) of titanium offers a high degree of freedom for the electrode design to reach a high electric conductivity and active surface area. In combination with atomic layer deposition (ALD) of iridium catalyst a porous transport electrode (PTE) can be fabricated. Using planar test cell results and model based PTE design, this study demonstrates the feasibility of a tubular PEMEL cell consisting of an additively manufactured, iridium coated anode PTE in the inner half cell, an extruded membrane and a platinum coated graphite felt cathode PTE in the outer half cell. The outer titanium current collector can be replaced by an extruded graphite polymer compound current collector to reduce the amount of titanium without performance losses. The cell is operated at 60 °C in 1 mol L−1 sulphuric acid and experimentally characterized by polarization curves and electrochemical impedance spectroscopy (EIS). At 2.0 V cell potential a current density of ≈450mAcm−2 was reached corresponding to an iridium mass specific current density >1500Ag−1 which is significant larger than literature values.
URI: http://hdl.handle.net/20.500.12738/14700
ISSN: 1879-3487
Review status: This version was peer reviewed (peer review)
Institute: Fakultät Technik und Informatik 
Department Maschinenbau und Produktion 
Heinrich-Blasius-Institut für Physikalische Technologien 
Type: Article
Funded by: Bundesministerium für Bildung und Forschung 
Appears in Collections:Publications without full text

Show full item record

Page view(s)

21
checked on Jul 6, 2024

Google ScholarTM

Check

HAW Katalog

Check

Add Files to Item

Note about this record


This item is licensed under a Creative Commons License Creative Commons