DC ElementWertSprache
dc.contributor.authorLanzieri Rodriguez, Leandro-
dc.contributor.authorKietzmann, Peter-
dc.contributor.authorFey, Goerschwin-
dc.contributor.authorSchlarb, Holger-
dc.contributor.authorSchmidt, Thomas C.-
dc.date.accessioned2024-02-21T11:36:54Z-
dc.date.available2024-02-21T11:36:54Z-
dc.date.issued2023-07-13-
dc.identifier.urihttp://hdl.handle.net/20.500.12738/14863-
dc.description.abstractAgeing detection and failure prediction are essential in many Internet of Things (IoT) deployments, which operate huge quantities of embedded devices unattended in the field for years. In this paper, we present a large-scale empirical analysis of natural SRAM wear-out using 154 boards from a general-purpose testbed. Starting from SRAM initialization bias, which each node can easily collect at startup, we apply various metrics for feature extraction and experiment with common machine learning methods to predict the age of operation for this node. Our findings indicate that even though ageing impacts are subtle, our indicators can well estimate usage times with an R² score of 0.77 and a mean error of 24% using regressors, and with an F1 score above 0.6 for classifiers applying a six-months resolution.en
dc.language.isoenen_US
dc.publisherArxiv.orgen_US
dc.relation.ispartofDe.arxiv.orgen_US
dc.subject.ddc004: Informatiken_US
dc.titleAgeing analysis of embedded SRAM on a large-scale testbed using machine learningen
dc.typePreprinten_US
dc.description.versionReviewPendingen_US
tuhh.oai.showtrueen_US
tuhh.publication.instituteDepartment Informatiken_US
tuhh.publication.instituteFakultät Technik und Informatiken_US
tuhh.publisher.doi10.48550/arXiv.2307.06693-
tuhh.type.opusPreprint (Vorabdruck)-
dc.type.casraiOther-
dc.type.dinipreprint-
dc.type.driverpreprint-
dc.type.statusinfo:eu-repo/semantics/draften_US
dcterms.DCMITypeText-
datacite.relation.IsSupplementedBydoi:10.6084/m9.figshare.22693495.v1en_US
local.comment.externalL. Lanzieri, P. Kietzmann, G. Fey, H. Schlarb, T. C. Schmidt. Ageing Analysis of Embedded SRAM on a Large-Scale Testbed Using Machine Learning. In Proc. of DSD, IEEE, 2023.en_US
item.creatorGNDLanzieri Rodriguez, Leandro-
item.creatorGNDKietzmann, Peter-
item.creatorGNDFey, Goerschwin-
item.creatorGNDSchlarb, Holger-
item.creatorGNDSchmidt, Thomas C.-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_816b-
item.creatorOrcidLanzieri Rodriguez, Leandro-
item.creatorOrcidKietzmann, Peter-
item.creatorOrcidFey, Goerschwin-
item.creatorOrcidSchlarb, Holger-
item.creatorOrcidSchmidt, Thomas C.-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypePreprint-
crisitem.author.deptDepartment Informatik-
crisitem.author.deptDepartment Informatik-
crisitem.author.deptDepartment Informatik-
crisitem.author.orcid0000-0002-0956-7885-
crisitem.author.parentorgFakultät Technik und Informatik-
crisitem.author.parentorgFakultät Technik und Informatik-
crisitem.author.parentorgFakultät Technik und Informatik-
Enthalten in den Sammlungen:Publications without full text
Zur Kurzanzeige

Seitenansichten

59
checked on 26.11.2024

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.